Responsive image
博碩士論文 etd-0821109-071256 詳細資訊
Title page for etd-0821109-071256
論文名稱
Title
利用三階段整治列車系統處理受NAPL污染之土壤及地下水
Remediation of NAPL-contaminated soils and groundwater by a three-stage treatment train system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-02
繳交日期
Date of Submission
2009-08-21
關鍵字
Keywords
三氯乙烯、界面活性劑沖排、整治列車系統、化學氧化處理、燃料油、土壤及地下水污染
Soil and groundwater contamination, surfactant flushing, treatment train system, trichloroethylene; petroleum hydrocarbons
統計
Statistics
本論文已被瀏覽 5738 次,被下載 2427
The thesis/dissertation has been browsed 5738 times, has been downloaded 2427 times.
中文摘要
自民國89年「土壤及地下水污染整治法」公佈後,行政院環保署即陸續針對不明廢棄物非法棄置場址、全國各加油站、大型油槽設施等場址進行土壤及地下水污染調查工作,並對超出土壤或地下水污染管制標準之場址,依法公告為控制場址或整治場址,要求污染行為人進行污染改善、控制及整治工作。有鑑於有機污染場址之數量有逐年增加之趨勢,且其整治工作有時必須採用「多種整治技術同時施工」,或需以「分時程、分階段增加整治單元」之方式進行,並隨個案場址狀況不同而異,故有關有機污染場址之整治技術,近年來已逐漸為各界所重視。
在眾多污染事件中,受NAPL (non-aqueous phase liquid, 非水相溶液)污染場址之整治具有相當高之困難度,而傳統之整治方式(例如抽取處理法及空氣灌入法)僅針對溶解相之有機污染物進行處理,並無法有效移除NAPL造成之污染源,導致整治時程之延長及整治經費之提高。本研究所研發之三階段整治列車系統(treatment train system),可有效同時移除DNAPL(dense-non-aqueous phase liquid)與LNAPL(light non-aqueous phase liquid)污染源並處理溶解相之有機污染物,而此整治列車系統之研究成果將可作為規劃設計NAPL污染場址整治系統之重要參考依據。研究中,我們以三氯乙烯(trichloroethylene, TCE)及燃料油(total petroleum hydrocarbon, TPH)為目標污染物,而論文所提出之三階段整治方式包括第一階段地下水及生物可分解之界面活性劑沖排(surfactant flushing),第二階段之化學氧化(高錳酸鉀及Fenton-like氧化)及第三階段之加強式生物處理。當第一階段之處理效率降低後,即進行第二階段之化學氧化處理,以氧化殘留於土壤及地下水中污染物,而剩餘之污染物將應用加強式生物處理之方式進行降解去除。
實驗結果顯示,所使用之兩種非離子型界面活性劑Tween 80與Triton X-100之沖洗效率略優於第三種界面活性劑Simple GreenTM(簡稱SG),但在環保(SG有較佳之生物分解性)與成本雙重考量下,本研究使用SG(成本為其他二種界面活性劑之1/3至1/4)進行後續之整治列車系統處理受TCE與燃料油污染之地下水與土壤。在高錳酸鉀氧化批次試驗方面,經過假一階反應動力參數推算後發現,當有添加1 g L-1 of SG於高錳酸鉀氧化TCE之系統時,其反應速率常數皆高於未添加SG之系統。因此添加SG對於高錳酸鉀氧化地下水中之TCE有正面效果,主要原因為SG可增進高錳酸鹽傳輸及提昇氧化速率之功能。結果也顯示,在96 mg L-1高錳酸鉀處理5 mg L-1 TCE之系統中,高錳酸鉀耗損速率常數及氯離子產生量可佐證添加SG確實有助於提昇高錳酸鉀脫氯降解TCE之效率。我們以較佳之整治列車系統組合進行管柱試驗,發現第一階段地下水及SG(1 g L-1)沖排可達到87.6%之TCE (初始濃度為40 mg/L)去除率;而第二階段注入96 mg L-1高錳酸鉀(第一階段殘留1 g L-1 of SG)氧化可再去除10.7%之TCE,殘留之TCE(1.7%)將可由第三階段之加強式生物處理去除,使TCE污染之介質達到完全整治之目標。
本研究也應用整治列車系統,以連續串聯的方式進行燃料油污染土壤之改善及復育。其中,以SG及地下水沖排、Fenton-like氧化技術與加強式生物處理串聯成整治列車系統處理受燃料油污染之土壤。結果顯示,第一階段SG及地下水沖排可達到80.3%之TPH去除率;而第二階段之Fenton-like氧化可再去除15.0%之TPH,殘留之TPH(4.7%)可由第三階段之加強式生物處理(利用第二階段殘留過氧化氫提供氧氣)去除。經三階段處理後,TPH濃度可由50,000 mg/kg降至ND值,達到完全去除之目標。總而言之,在複雜的地下環境中,整治列車概念系統可借重單一整治技術之優點,而彌補彼此間之缺點,對於受NAPL污染之地下水與土壤,極具應用發展潛力,未來更可應用於其他難分解污染物污染之土壤或地下水場址之整治。
Abstract
The industrial solvent trichloroethylene (TCE) and petroleum hydrocarbons (e.g., fuel oil) are among the most ubiquitous organic compounds found in subsurface contaminated environment. The developed treatment train system included the first stage of groundwater and surfactant flushing followed by the second stage of chemical oxidation such as potassium permanganate (KMnO4) and Fenton-like treatment. The third stage was the application of enhanced bioremediation for the further removal of residual contaminants after the first two treatment processes. The objectives of this study were to (1) assess the applicability of treatment train system for the remediation of organic compounds contaminated subsurface environment, (2) determine the optimal operational conditions of the three-stage treatment system, and (3) evaluate the effects of residual surfactant Simple GreenTM (SG) and hydrogen peroxide (H2O2) after chemical oxidation stage on the efficiency of bioremediation process. In this study, three different surfactants [SG, Triton X-100, and Tween 80] were evaluated in batch experiments for their feasibility on contaminants removal. Results from the surfactant biodegradation and microbial enumeration study indicate that SG was more biodegradable and was able to enhance the microbial activity of the intrinsic microorganisms. Thus, SG was applied in the following batch or column experiments of the treatment train system. Results from this study indicate that approximately 87.6% of TCE in the system (with initial concentration of 40 mg L-1) could be removed from the simulated dense non-aqueous-phase liquids (DNAPLs) system after groundwater flushing followed by biodegradable surfactant (1 g L-1 of SG) flushing, while the TCE concentrations dropped from 40 to 4.96 mg L-1 at the end of the flushing experiment. Moreover, approximately 10.7% of the remaining TCE could be removed from the system after the oxidation process using KMnO4 as the oxidant. Results from the oxidation process show that TCE was reduced from 4.96 to 0.69 mg L-1, and chloride concentation was increased from ND to 0.88 mg L-1 with the presence of 1 g L-1 of SG. The residual 1.7% of the TCE could be further remediated via the enhanced bioremediation stage, and the TCE concentrations dropped from 0.69 mg L-1 to below detection limit at the end of the bioremediation experiment. Results also indicate that the remaining KMnO4 had no significant inhibition on bacterial growth and TCE biodegradation. Thus, SG flushing and KMnO4 oxidation would not cause adverse effect on subsequent bioremediation process using intrinsic bacteria. Thus, complete TCE remediation was observed in this study using the three-stage treatment scheme. Results from the column experiment reveal that a complete TPH removal could be obtained after the application of three consecutive treatment processes. Results show that TPH concentration could be reduced from 50,000 mg kg-1 to below detection limit. This indicates that the treatment train system is a promising technology to remediate fuel-oil contaminated soils. Results from the column study indicate that approximate 80.3% of initial TPH in the soil could be removed after the SG [50 pore volumes (PVs)] followed by groundwater (30 PVs) flushing. The Fenton-like oxidation (with 6% of H2O2 addition) was able to remove another 15.0% of TPH. The observed first-order reaction rate constant of TPH oxidation was 2.74×10-2 min-1, and the half-life was 25.3 min during the first 40 min of reaction. The residual 4.7% of the TPH could be further remediated via the aerobic bioremediation process. Thus, complete TPH removal was obtained in this study using the three-stage treatment scheme. The proposed treatment train system would be expected to provide a more efficient and cost-effective alternative to remediate chlorinated solvent and petroleum hydrocarbons contaminated sites.
目次 Table of Contents
List of Contents
Page
謝誌 Ⅰ
中文摘要 III
Abstract V
List of Contents …...........................................................................VIII
List of Tables .................................................................................... XII
List of Figures.................................................................................. XIII

Chapter 1 Introduction 1
1.1 Background of the Study 2
1.2 Objectives of Research 2

Chapter 2 Literature Review 4
2.1 Groundwater Pollution of Chlorinated Solvents 5
2.2 Soils Pollution of Petroleum Hydrocarbons 6
2.3 Treatment Trains System 7
2.4 Surfactant Flushing 9
2.5 In-Situ Chemical Oxidation Technology……………………………10
2.5.1 Fenton-like in Soils Remediation 12
2.5.2 Potassium Permanganate in Groundwater Remediation 13
2.6 Enhanced Bioremediation 15
Chapter 3 Materials and Methods 16
3.1 Soil and Groundwater Characterization 17
3.1.1 Site A 17
3.1.2 Site B 17
3.2 Surface Tension Test 18
3.3 Treatment Train System Development of TCE in Groundwater 19
3.3.1 Surfactant Selection Study 19
3.3.1.1 Surfactant Solubilization of TCE………………………….20
3.3.1.2 TCE Biodegradation Experiment………………………….20
3.3.1.3 Surfactant Flushing Experiment..………………………….22
3.3.2 Batch Experiments of Surfactant Enhanced Permanganate
Oxidation of Trichloroethylene in Groundwater…….....………..22
3.3.3 Column Experiments of Surfactant Enhanced Permanganate
Oxidation of Trichloroethylene in Groundwater….……………..23
3.3.4 Effect of Surfactant on Contaminant Biodegradation..………….25
3.3.5 Remediation of TCE-Contaminated Groundwater by Treatment
Train System…………………………………………………….26
3.3.5.1 Stage 1 - Groundwater and Surfactant Flushing...…………26
3.3.5.2 Stage 2 - Potassium Permanganate Oxidation…………..…26
3.3.5.3 Stage 3 - Enhanced Bioremediation……..…………………27
3.4 Treatment Train System Development of Fuel-oil in Soil 28
3.4.1 Surfactant Selection Study………………………………………28
3.4.1.1 TPH Biodegradation Experiment………………………….28
3.4.1.2 Surfactant Flushing Experiment..………………………….29
3.4.2 Remediation of Fuel-Oil Contaminated Soils by Treatment Train
System…………………………………………………………...30
3.4.2.1 Stage 1 - Surfactant and Groundwater Flushing ..………...30
3.4.2.2 Stage 2 - Fenton-like Oxidation…………….…….….....…32
3.4.2.3 Stage 3 - Enhanced Bioremediation …....…………………32

Chapter 4 Results and Discussion 34
4.1 Surface Tension Test 35
4.2 Treatment Train System Development of Chlorinated Solvents in Groundwater 35
4.2.1 Surfactant Selection Study 35
4.2.1.1 Surfactant Solubilization of TCE………………………….35
4.2.1.2 TCE Biodegradation Experiment………………………….37
4.2.1.3 Surfactant Flushing Experiment..………………………….40
4.2.2 Batch Experiments of Surfactant Enhanced Permanganate
Oxidation of Trichloroethylene in Groundwater…….....………..42
4.2.3 Column Experiments of Surfactant Enhanced Permanganate
Oxidation of Trichloroethylene in Groundwater….……………..50
4.2.4 Effect of Surfactant on Contaminant Biodegradation..………….54
4.2.5 Remediation of TCE-Contaminated Groundwater by Treatment
Train System…………………………………………………….57
4.2.5.1 Stage 1 - Groundwater and Surfactant Flushing …………..57
4.2.5.2 Stage 2 - Potassium Permanganate Oxidation…………..…59
4.2.5.3 Stage 3 - Enhanced Bioremediation…….…………………62
4.2.5.4 Removal Efficiency of Treatment Train System..…………63

4.3 Treatment Train System Development of Petroleum Hydrocarbons in Soil 64
4.3.1 Surfactant Selection Study 64
4.3.1.1 TPH Biodegradation Experiment………………….………64
4.3.1.2 Surfactant Flushing Experiment..………………………….68
4.3.2 Remediation of Fuel-Oil Contaminated Soils by Treatment Train
System…………………………………………………………...70
4.3.2.1 Stage 1 - Surfactant and Groundwater Flushing ..………...70
4.3.2.2 Stage 2 - Fenton-like Oxidation…………….…….….....…71
4.3.2.3 Stage 3 - Enhanced Bioremediation …....…………………74
4.3.2.4 Removal Efficiency of Treatment Train System..…………75

Chapter 5 Conclusions and Recommendations 76
Chapter 6 References 80




List of Tables
Page
Table 2-1 The properties of chlorinated solvents……………... 6
Table 2-2 Properties of chemical oxidants……………………. 11
Table 3-1 Chemical and physical properties of selected commercial surfactants……………………………..
20
Table 4-1 The degradation rates, reaction rate constants, and half-life values of TCE oxidation employed various KMnO4 and surfactant SG concentrations………….

45
Table 4-2 The concentrations of TCE degradition by-products, chloride generation, oxidatnt KMnO4 monitiored at the column outlet during two oxidation stages……..

52
Table 4-3 Removal efficiencyies of three different treatment processes…………………………………………….
64
Table 4-4 Calculated percentage of total TPH removal after the application of the three-stage treatment train system.........................................................................

75











List of Figures
Page
Figure 2-1 Superfund remedial actions: treatment trains with innovative treatment technologies………………......
8
Figure 3-1 Schematic of the column apparatus………………… 24
Figure 3-2 Schematic diagram of the column experiment……... 31
Figure 4-1 Properties of surfactant SG solution as surface tension analyses…………………………………......
35
Figure 4-2 The solubilization of 40 mg L-1 of TCE in different solutions (groundwater, 1 g L-1 of Tween 80, 1 g L-1 of Triton X-100, and 1 g L-1 of SG)………………...

36
Figure 4-3 Removal efficiency of TCE (1 mg L-1) in microcosms containing various surfactants…………
39
Figure 4-4 The microbial growth patterns of the total viable bacterial count in the reactors using surfactants (1 g L-1) of SG, Tween 80, and Triton X-100…………….

39
Figure 4-5 Variations in TCE (initial TCE concentration = 40 mg L-1) removal efficiency versus flushed pore volumes in batch experiment using groundwater and different surfactant solutions (Tween 80, Triton X-100, and SG) with (a) initial surfactant concentration = 1 g L-1; (b) initial surfactant concentration = 0.5 g L-1…………………………....





41
Figure 4-6 Effect of [KMnO4] on the oxidation of TCE: (a) different KMnO4 and surfactant SG concentrations; (b) 12 mg L-1 KMnO4 + different surfactant SG concentrations; (c) 48 mg L-1 KMnO4 + different surfactant SG concentrations………………..……...



44
Figure 4-7 The effect of surfactant SG addition on the KMnO4 consumption rates as the initial KMnO4 concentration was 96 mg L-1 and TCE concentration was 38.1 μM: (a) KMnO4 consumption concentration; (b) Pseudo-first-order rate constants analyses………….…………………………………..




48
Figure 4-8 The amounts of chloride generated and TCE degraded under the oxidation reaction with 96 mg L-1 KMnO4 in the absence and presence of 1 g L-1 SG: (a) amounts of chloride generated; (b) concentration of TCE in groundwater………..……..



49
Figure 4-9 The concentrations of chloride generation and by-products under the degradation of TCE in column experiment…………………..……………...

53
Figure 4-10 Pseudo-first-order rate constant kobs for KMnO4 consumption rate under both oxidation stages……...
53
Figure 4-11 The ratio of [TCE]/[MnO4-] and TCE degradation during two oxidation testing stages…………………
54
Figure 4-12 TCE degradation under aerobic microcosm experiments with sludge and surfactant SG (0.1 g L-1 and 1 g L-1) addition……………………………..

57
Figure 4-13 Percentage of TCE removal versus the pore volumes of groundwater and 1 g L-1 of SG used……………..
58
Figure 4-14 Amounts of produced chloride and degraded TCE during the oxidation reaction with 96 mg L-1 of KMnO4 in the absence or presence of 1 g L-1 of SG...

60
Figure 4-15 Ratio of [TCE]/[MnO4-] and KMnO4 consumption during the oxidation stage…………………………..
60
Figure 4-16 Amounts of MnO2 produced during the oxidation reaction with 96 mg L-1 of KMnO4 in the absence or presence of 1 g L-1 of SG……………………………

61
Figure 4-17 Reaction of permanganate and TCE in the presence (left) and absence (right) of 1 g L-1 of SG…………..
61
Figure 4-18 Disappearance of 0.69 mg L-1 of TCE and the growth pattern of culturable bacterial counts………
63
Figure 4-19(a) Biodegradation of 1,000 mg kg-1 of TPH in microcosms using surfactants (1 g L-1) of SG, Tween 80, and Triton X-100………………………………..
67
Figure 4-19(b) The microbial growth patterns of the culturable bacterial counts in the soil using surfactants (1 g L-1) with SG, Tween 80, and Triton X-100………………
67
Figure 4-20(a) Variations in TPH removal efficiency versus flushed pore volumes in batch experiment using different surfactant solutions (10 g L-1 of SG, 10 g L-1 of Triton X-100, and 10 g L-1 of Tween 80) with initial fuel oil concentration of 10,000 mg kg-1…………… 69
Figure 4-20(b) Variations in TPH removal efficiency versus flushed pore volumes in batch experiment using different surfactant solutions (10 g L-1 of SG, 10 g L-1 of Triton X-100, and 10 g L-1 of Tween 80) with initial fuel oil concentration of 50,000 mg kg-1……………



69
Figure 4-21 Percentage of TPH removal versus the pore volumes of SG (10 g L-1) and groundwater used……………..
71
Figure 4-22 Variations in TPH concentrations, temperature, H2O2 concentrations, and ORP versus the oxidation time………………………………………………….

73
Figure 4-23 Disappearance of 2,354 mg of TPH/kg and the growth pattern of culturable bacterial counts……….
74
參考文獻 References
ADEQ (Arizona Department of Environmental Quality), 2003. “Superfund Programs Section Site Information.” July.
API (American Petroleum Institute), 1987. Field study of enhanced subsurface biodegradation of hydrocarbons using hydrogen peroxide as a carbon source, API Publ. No. 4448, Am. Pet. Inst., Washington, D. C.
APHA (American Public Health Association), 2001. Standard Methods for the Examination of Water and Wastewater, 21th Ed, APHA-AWWA-WEF, Washington, D. C.
Arostein, B.N., Calvillo, Y.M., Alexander, M., 1991. Effects of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25, 1728-1731.
Atlas, R.M., Philp, J., 2005. Bioremediation: applied microbial solutions for real-world environmental cleanup, American society for microbiology. Washington, D. C. 202-221.
Baciocchi, R., Boni, M.R., April, L.D., 2003. Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton’s and Fenton-like oxidation in soils. J. Hazard. Mater., B96, 305-329.
Barreiro, J.C., Capelato, M.D., Martin-Neto, L., Hansen, H.C.B., 2007. Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Res., 41, 55-62.
Bento, F.M., Camargo, F.A.O., Okeke, B.C., Frankenberger, W.T., 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol., 96, 1049-1055.
Boopathy, R., 2002. Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. J. Hazard. Mater., 92, 103-114.
Chapman, S.W., Parker, B.L., Cherry, J.A., Aravena, R., Hunkeler, D., 2007. Groundwater–surface water interaction and its role on TCE groundwater plume attenuation. J. Contam. Hydrol., 91, 203-232.
Childs, J.D., Acosta, E., Knox, R., Harwell, J.H., Sabatini, D.A., 2004. Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems. J. Contam. Hydrol., 71, 27-45.
Chung, H.H., Jung, J., Yoon, J.H., Lee, M.J., 2002. Catalytic ozonation of PCE by clay from tidal flat sediments. Catal. Letters, 78 (1-4), 77-79.
Chu, W., Choy, W.K., Hunt, J.R., 2005. Effects of non-aqueous phase liquids on the washing of soil in the presence of nonionic surfactants. Water Res., 39, 340-348.
Conrad, S.H., Glass, R.J., Peplinski, W.J., 2002. Bench-scale visualization of DNAPLs remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. J. Contam. Hydrol., 58, 13-49.
DeHghi, B., Hodges, A., Feng, T.H., 2002. Post-treatment evaluation of Fenton’s reagent in situ chemical oxidation. Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, May 20-23 2002. Battelle Press, Monterey, CA, United States, 1195-1204.
Dong, X., Shen, W., Zhu, Y., Xiong, L., Gu, J., Shi, J., 2005. Investigation on Mn-loaded mesoporous silica MCM-41 prepared via reducing KMnO4 with in situ surfactant. Micropor. Mesopor. Mat., 81, 235-240.
Everitt, B., 2002. The Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge, UK.
Ferguson, S.H., Woinarski, A.Z., Snape, I., Morris, C.E., Revill, A.T., 2004. A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Reg. Sci. Technol., 40, 47-60.
Ferraz, W., Oliverira, L.C.A., Dallago, R., Conceicao, L.D., 2007. Effect of organic acid to enhance the oxidative power of the Fenton-like system: computational and empirical evidences. Catal. Commum., 8, 131-134.
Fortin, N., Beaumier, D., Lee, K., Greer, C.W., 2004. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J. Microbiol. Methods, 56, 181-191.
Fountain, J.C., 1998. Technologies for Dense Non-aqueous Phase Liquid Source Zone Remediation, Ground-Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, PA.
Gallego, J.R., Loredo, J., Llamas, J.F., Vazquez, F., Sanchez, J., 2001. Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12, 325-335.
Gee, B.W., Bauder, J.W., 1986. In: A. Klute et al. (Eds.), Methods of soil analysis (Part 1), 2nd Edition, ASA and SSSA, Madison, WI, 399-404.
Gentry, T.J., Rensing, C., Pepper, I.L., 2004. New approaches for bioaugmentation as a remediation technology. Environ. Sci. Technol., 34, 447-494.
Harwell, J.H., Sabatini, D.A., Knox, R.C., 1999. Surfactants for groundwater remediation. Colloid Surf. A., 141, 255-268.
Hesse, P.R., 1971. Textbook of Soil Chemical Analysis. Chemical Publishing Company, New York, 332.
Huang, K.C., Hoag, G.E., Chheda, P., Woody, B.A., Dobbs, G.M., 1999. Kinetic study of the oxidation of trichloroethylene by potassium permanganate. Environ. Engineer. Sci., 16, 265-274.
Huang, H.H., Lu, M.C., Chen, J.N., 2001. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res., 35, 2291-2299.
ITRC (Interstate Technology & Regulatory Council), 2001. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater. Interstate Technology and Regulatory Cooperation Work Group, USA.
ITRC (Interstate Technology and Regulatory Council), 2002. Technical and Regulatory Guidance for Surfactant/Cosolvent Flushing of DNAPL Source Zones. Interstate Technology and Regulatory Council, Washington, D. C.
ITRC (Interstate Technology & Regulatory Council), 2005. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater (second edition). Interstate Technology and Regulatory Cooperation Work Group, USA.
Kao, C.M., Lei, S.E., 2000. Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Res., 34, 835-845.
Kao, C.M., Chen, S.C., Su, M.C., 2001. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere, 44, 925-934.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., Wu, W.S., 2003. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res., 37, 4885-4894.
Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y., Chen, Y.L., 2007. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere, 70, 1492-1499.
Kim, I.S., Park, J.S., Kim, K.W., 2001. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem., 16, 1419-1428.
Kong, S.H., Watts, R.J., Choi, J.H., 1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37, 1473-1482.
Kulik, N., Goi, A., Trapido, M., Tuhkanen, T., 2006. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J. Environ. Manage., 78, 382-391.
Laha, S., Luthy, R.G., 1992. Effect of nonionic surfactants on the solubilization and mineralization of phenanthrene mineralization in soil-water system, Biotechnol. Bioeng., 40, 1367-1380.
Lee, M., Kang, H., Do, W., 2005. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Res. 39, 139-146.
Levin, R., Kellar, E., Wilson, J., Ware, L., Findley, J., Baehr, J., 2000. Full-scale soil remediation of chlorinated solvents by in situ chemical oxidation. In: G.B.Wickramanayake, A.R. Gavaskar, A.S.C. Chen (Eds.), Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 153-159.
Li, Z., 2004. Surfactant-enhanced oxidation of trichloroethylene by permanganate -proof of concept. Chemosphere, 54, 419-423.
Li, X.D., Schwartz, F.W., 2004. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates. J. Contam. Hydrol., 68, 269-287.
Li, Z., 2004. Surfactant-enhanced oxidation of trichloroethylene by permanganate -proof of concept. Chemosphere, 54, 419-423.
Lunn, S.R.D., Kueper, B.H., 1999. Manipulation of density and viscosity for the optimization of DNAPL recovery by alcohol flooding. J. Contam. Hydrol., 38, 427-445.
McCray, J.E., Bai, G., Maier, R.M., Brusseau, M.L., 2001. Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol., 48, 45-68.
Mckeague, J.A., Day, J.H., 1966. Dithionite and oxalate extractable Fe and Al as acids in different various classes of soils. Can. J. Soil. Sci., 46, 13-22.
Mecozzi, R., Palma, L.D., Merli, C., 2006. Experimental in situ chemical peroxidation of atrazine in contaminated soil. Chemosphere, 62, 1481-1489.
Miller, C.M., Valentine, R.L., Roehl, M.E., Alvarez, P.J.J., 1996. Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton’s reagent. Water Res., 30 (11), 2579-2586.
Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol., 60, 371-380.
Mulligan, C.N., 2005. Environmental applications for biosurfactants. Environ. Pollut., 133, 183-198.
Namkoong, W., Hwang, E., Park, J., Choi, J., 2002. Bioremediation of diesel-contaminated soil with composting. Environ. Pollut., 119, 23-31.
Nielson, D.W., Sommers, L.E., 1986. In: A. Klute et al. (Eds.), Methods of soil analysis (Part 1), 2nd Edition, ASA and SSSA, Madison, WI, 570-571.
Olaniran, A.O., Pillay, D., Pillay, B., 2006. Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere, 63, 600-608.
Qin, X.S., Huang, G.H., Chakma, A., Chen, B., Zeng, G.M., 2007. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Sci. Total Environ., 381, 17-37.
Oostrom, M., Hofstee, C., Walker, R.C., Dane, J.H., 1999. Movement and remediation of trichloroethylene in a saturated, heterogeneous porous medium 2. Pump-and-treat and surfactant flushing. J. Contam. Hydrol., 37, 179-197.
Quan, H.N., Teel, A.L., Watts, R.J., 2003. Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soils. J. Hazard. Mater., B102, 277-289.
Sanchez, L., Romero, E., Pen, A., 2005. Photostability of methidathion in wet soil amended with biosolid and a surfactant under solar irradiation. Chemosphere, 59, 969-976.
Sarkar, D., Ferguson, M., Datta, R., Birnbaum, S., 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut., 136, 187-195.
Schroth, M.H., Oostrom, M., Wietsma, T.W., Istok, J.D., 2001. In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. J. Contam. Hydrol., 50, 79-98.
Singh, N., Lee, D.G., 2001. Permanganate: a green and versatile industrial oxidant. Org. Process Res. Dev., 5 (6), 599-603.
Tantak, N.P., Chaudhari, S., 2006. Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater., B136, 698-705.
TEPA, Taiwan Environmental Protection Administration, 2003. A research on the determination of the TPHs pollution levels in soil. Technical Report, Taiwan.
Torres, L.G., Rojas, N., Bautista, G., Iturbe, R., 2005. Effect of temperature, and surfactant’s HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochem., 40, 3296-3302.
Tsai, T.T., Kao, C.M., Yeh, T.Y., Lee, M.S., 2007. Chemical oxidation of chlorinated solvents in contaminated groundwater: a review. American Society of Civil Engineers (ASCE), Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(2), 116-126.
US EPA (US Environmental Protection Agency), 2001. Treatment Technologies for Site Cleanup Annual Status Report (Tenth Edition), EPA-542-R-01-004, Washington, D. C.
US EPA (US Environmental Protection Agency), 2004. Treatment Technologies for Site Cleanup Annual Status Report (Eleventh Edition), EPA-542-R-03-009, Washington, D. C.
Urum, K., Pekdemir, T., Çopur, M., 2004. Surfactants treatment of crude oil contaminated soils. J. Colloid Interface Sci., 276, 456-464.
Urum, K., Grigson, S., Pekdemir, T., McMenamy, S., 2006. A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere, 62, 1403-1410.
Urynowicz, M.A., Siegrist, R.L., 2005. Interphase mass transfer during chemical oxidation of TCE DNAPLs in an aqueous system. J. Contam. Hydrol., 80, 93-106.
Wang, S., Mulligan, C.N., 2004. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere, 57, 1079-1089.
Watts, R.J., Dilly, S.E., 1996. Evaluation of iron catalysis for the Fenton-like remediation of diesel-contaminated soils. J. Hazard. Mater., 51, 209-224.
Yan, Y.E., Schwartz, F.W., 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J. Contam. Hydrol., 37, 343-365.
Yan, Y.E. Schwartz, F.W., 2000. Kinetics and mechanisms for TCE oxidation by permanganate. Environ. Sci. Technol., 34, 2535-2541.
Yeh, C.K.J., Kao, Y.A., Chen, C.P., 2002. Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen: the effect of soil organic matter. Chemosphere, 46, 67-73.
Yu, H., Zhu, L., Zhou, W., 2007. Enhanced desorption and biodegradation of phenanthrene in soil-water systems with the presence of anionic–nonionic mixed surfactants. J. Hazard. Mater., 142, 354-361.
Zhai, X., Hua, I., Rao, P.S.C., Lee, L.S., 2006. Cosolvent-enhanced chemical oxidation of perchloroethylene by potassium permanganate. J. Contam. Hydrol. 82 (2006).61-74.
Zhou, W., Zhu, L., 2007. Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant PAHs system. Environ. Pollut., 147, 66-73.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code