Responsive image
博碩士論文 etd-0821109-172026 詳細資訊
Title page for etd-0821109-172026
論文名稱
Title
建立禽畜水產品中之喹諾酮類藥物分析方法 及恩氟喹諾酮羧酸在吳郭魚中藥物動力學之研究
Simultaneous Determination of Quinolones in Marine and Livestock Products and Pharmacokinetics of Enrofloxacin in Tilapia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
152
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-20
繳交日期
Date of Submission
2009-08-21
關鍵字
Keywords
喹諾酮類抗菌劑殘留、液相層析串聯式質譜儀、液相層析儀螢光分析、吳郭魚、藥物動力學
quinolones residue HPLC-FLD LC/MS/MS tilapia pharmacokinetics
統計
Statistics
本論文已被瀏覽 5802 次,被下載 3550
The thesis/dissertation has been browsed 5802 times, has been downloaded 3550 times.
中文摘要
本研究分為三個章節探討:第一部份是建立液相層析螢光檢測方法同步分析雞肉、豬肉、魚及蝦中11種喹諾酮類抗菌劑殘留(marbofloxacin、norfloxacin、ciprofloxacin、lomefloxcain、danofloxacin、enrofloxacin、sarafloxacin、difloxacin、oxolinic acid、nalidixic acid、flumequine)。樣品以0.3%偏磷酸:氰甲烷(1:1, v/v)萃取,經減壓濃縮去除氰甲烷後注入HLB固相萃取匣淨化。液相層析分析條件使用以symmetry column C18 (250 x 4.5 mm i.d., 5 μm)管柱分離,配合三段式程式螢光偵檢器偵測,移動相由0.1%甲酸水溶液及氰甲烷組成進行梯度沖堤。空白肌肉組織添加3種濃度(25、50及250 ng/g;除了danofloxacin添加濃度為6.25, 12.5 及62.5 ng/g)建立線性、偵測極限、定量極限、精密度及精確度之確效試驗。11種喹諾酮抗菌劑之添加試驗之平均回收率為71.7至105.3%,定量極限為5.0至28.0 ng/g。結果顯示本方法簡單、快速、靈敏且適合例行性分析工作。
第二部份是建立液相層析-電噴灑-串聯式質譜儀方法檢測牛奶、雞肉、豬肉、魚及蝦中18種喹諾酮抗菌劑殘留,此方法能篩檢及確認包括12種兩性的喹諾酮抗菌劑 (marbofloxacin、norfloxacin、enrofloxacin、ciprofloxacin、desethylene ciprofloxacin、lomefloxacin、danofloxacin、sarfloxacin、difloxacin、ofloxacin、orbifloxacin、enoxacin)及6種酸性的喹諾酮抗菌劑 (oxolinic acid、nalidixic acid、flumequine、cinoxacin、piromidic acid、pipemidic acid)。樣品之萃取液為含1%甲酸之氰甲烷溶液,經減壓濃縮後以10%氰甲烷定容,再以正己烷去脂。高效能液相層析分析條件為XDB C8 (150 x 4.6 mm, 5μm)分離管柱,移動相由20 mM甲酸銨、0.1%甲酸水溶液及氰甲烷組成進行梯度沖堤,質譜儀使用正離子多重反應(MRM)模式。CCα及CCβ之測定乃參考歐盟2002/657/EC 指令及ISO 11843號標準,使用禁用物質之模式。本實驗條件下所測得之CCα範圍為0.18至0.68 ng/g ,CCβ範圍為0.24至0.96 ng/g。
第三部份是研究吳郭魚體內恩氟喹諾酮羧酸(enrofloxacin;ENR)及其代謝物(ciprofloxacin;CIP及des-CIP)藥物動力學,吳郭魚以口服、血管給藥單一劑量分別為10及2.5 mg/kg魚重,給藥後定時採樣(0.25、0.5、1、2、4、8、16、24、48、72、96、120、144、168 小時採樣),每一採樣點採4隻魚體,使用LC/MS/MS分析其全血及主要臟器組織(肝、腎、胆汁及肌肉)中ENR及其代謝物(CIP, des-CIP)殘留量,LOQ 為0.01 μg/g。口服及血管兩種給藥途徑後,吳郭魚的藥物動力學過程符合一級吸收二室性開放模式。血管給ENR藥的主要藥物動力學參數為:血中濃度-時間曲線下面積(AUC) 、消除半衰期(t1/2β)、最高血中濃度(Cmax )、清除率(Cltot)及表現分佈容積(Vdss)分別為109.618 ± 31.333 μg.h/mL、55.17 ± 22.84 h、4.70 ± 0.36 μg/mL 、0.148 ± 0.004 L/h/kg 、 1.111 ± 0.226 L/kg。口服給ENR藥的主要藥物動力學參數為: AUC 、消除半衰期、 最高血中濃度出現的時間點(Tmax )、最高血中濃度(Cmax )分別為599.418 ± 76.194 μg.h/mL 、75.95 ± 12.94 h、0.601±0.06h 、9.748 ± 0.458 μg/ mL。口服給ENR藥後可在肝、腎及胆汁中測到CIP(ENR的活性代謝物)。而des-CIP(CIP的主要代謝物)僅在口服給ENR藥後第120 ∼168 h的膽汁中測到0.01 ∼0.03 μg/ g 。ENR及其代謝物在吳郭魚體內為典型的腸肝循環且會大量累積在胆汁中。這現象可以解釋吳郭魚在口服ENR後到第7天血液及肌肉尚維持在高濃度的原因。
Abstract
The study felld into three sections. The first section that a liquid chromatography method with fluorescence detection was developed for simultaneous determination of 11 quinolones (QNs; marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid, nalidixic acid and flumequine) in chicken, pork, fish and shrimp. The analytes were extracted with 0.3% metaphosphoric acid: acetonitrile (1:1, v/v), followed by a HLB cartridge clean-up procedure. The HPLC separation was carried out on a symmetry column C18 (250 mm x 4.5 mm i.d., 5 μm) with linear gradient elution of 0.1% formic acid: acetonitrile as mobile phase and programmable fluorescence detection. The method was validated by spiking blank animals tissues at three different levels (25, 50 and 250 ng/g; except 6.25, 12.5 and 62.5 ng/g for DAN) and linearity, detection limit, quantification limit, precision and accuracy were checked. Mean recoveries of 11 QNs from edible animal tissues were 71.7-105.3%. The limits of quantification in different muscle tissues ranged from 5.0 to 28.0 ng/g. The results showed it was simple, rapid, sensitive and suitable for routine test.
The second section that a LC-ESI-MS/MS method was developed for determining 18 (fluoro)quinolone (QNs) residues in milk, chicken, pork, fish and shrimp. This method is capable of screening and confirming the presence of 12 amphoteric QNs (marbofloxacin, norfloxacin, enrofloxacin, ciprofloxacin, desethylene ciprofloxacin, lomefloxacin, danofloxacin, sarfloxacin, difloxacin, ofloxacin, orbifloxacin and enoxacin) and 6 acidic QNs (oxolinic acid, nalidixic acid, flumequine, cinoxacin, piromidic acid and pipemidic acid). The drugs were extracted from matrix using acetonitrile with 1% formic acid, diluted in 10% acetonitrile and defatted by extraction with hexane. The LC separation was conducted on a XDB C8 (150 x 4.6 mm, 5μm) column with gradient elution of 20 mM ammonium formate with 0.1% formic acid–acetonitrile as the mobile phase. Mass spectral acquisition was completed in the positive ion mode by applying multiple reaction mode (MRM). The decision limit (CCα) and detection capability (CCβ) stated in the Decision No. 2002/657/EC and the ISO standard No.11843, has been calculated in the case of the nonauthorized substance. The values of CCα ranged from 0.18 to 0.68 ng/g and CCβ ranged from 0.24 to 0.96 ng/g under specified conditions.
The third section that the pharmacokinetics of ENR and its active metabolite (CIP and des-CIP) were estimated in tilapia after intravenous (i.v.) and oral (p.o.) administration of a single dose of 2.5 and 10 mg/kg body weigh, respectively. At prefixed time points, from 0.25 h to 7 days after administration, whole blood and main tissue (liver, kidney, bile and muscle) from 4 individuals in each were collected. The concentration of ENR and its active metabolites in the main tissue were simultaneously detected by LC/MS/MS method. Limited of quantitation (LOQ) of this method were 0.01μg/g. Pharmacokinetic parameters from both routes were described to have a two- compartment open model with first-order elimination. After i.v. administration, the area under the drug concentration-time (AUC), elimination half-life (t1/2β), maximum plasma concentration (Cmax ), total body clearance (Cltot) and apparent volume of distribution at steady-state (Vss) of ENR were 109.6 ± 31.33 μg.h/mL, 55.17 ± 22.84 h, 4.70 ± 0.36 μg/mL, 14.82 ± 4.24 L/h/kg, 1105 ± 223.40 L/kg ,respectively. After oral administration, the AUC , t1/2β, Tmax , Cmax of ENR were 599.42 ± 76.19μg.h/mL , 75.95 ± 12.94 h, 0.601±0.06h, 9.75 ± 0.46μg/mL, respectively. After p.o. administration, CIP could be detected in liver, kidney and bile. Regarding des-CIP, the main active metabolite of CIP, could be detected in 120∼168 h bile among tissue. ENR and CIP had significance enterohepatic cycle in Tilapia and easily accumulated in bile. It seems reasonable to explain the phenomenon of ENR and CIP maintenance of high concentration in blood and muscle during the test time.
目次 Table of Contents
摘要…………………………………….…………………………………………………..Ⅰ
Abstract……………………………………………………..………………………………Ⅲ
目錄………………………………………………………..……………………………….Ⅴ
表目錄……………………………………………………………….……………………..Ⅶ
圖目錄……………………………………………………………….……………………..Ⅸ

第一章前言…………………………………………………...………….…………………1
第一節引言……………………………………………………………………1
第二節喹諾酮類藥物的特性及其用……………………………………….3
第三節、喹諾酮類藥物殘留問題.…………………………………….……..14
第四節喹諾酮類藥物殘留檢測…………………………………….………………18
第五節喹諾酮類藥物於水生生物之藥物動力學研究………………….…………25
第六節 吳郭魚之簡介……………………………………………….……….…...35
第二章 高效能液相層析螢光法分析喹諾酮類殘留之研究………………………………37
第一節引言………………………………………………………….…….....37
第二節儀器材料及方法……………………………………………..………………38
第三節結果…………………………………………………………...………………43
第四節討論……………………………………………………….….………………..54
第三章 LC-ESI/MS/MS分析喹諾酮類抗菌劑殘留之研究……………….….……………58
第一節引言……………………………………………….….….……………..58
第二節儀器材料及方法………………………………………….….……………...59
第三節結果…………………………………………………………..………………65
第四節討論………………………………………………………………….………..75
第四章 恩氟喹諾酮羧酸及其代謝物在吳郭魚體內的藥物動力學之研究………………79
第一節引言.................................................………………………………………….79
第二節儀器材料及方法…………………………………………………………...81
第三節結果………………………………………………………………………...89
第四節討論…………………………………………………………………………103
第五章 總結……………………………………………………………………………..105
參考文獻…………………………………………………………………………………109
附錄一、圖1∼19……………………………………………………………………….118
附錄二、個人簡歷………………………………………………………………………137
表目錄
頁次
表1-1 台灣、日本、歐盟之喹諾酮類藥最大殘留容許量(MRL)……….………..15
表1-2 喹諾酮類合成抗菌劑殘留分析方法………………………………………….23
表1-3 氟滅菌使用規範……………………………………………………………….27
表1-4 歐索磷酸用規範……………………………………………………………….28
表1-5 吳郭魚特性…………………………………………………………………….36
表2-1 分析11種QNs移動相之梯度設定……………………………………………42
表2-2 螢光偵測器激發/放射波長設定……………………………………………...42
表2-3 14種喹諾酮類抗菌劑其紫外光及螢光最佳偵測波長………………………44
表 2-4 比較3種萃取方法之回收率…………………………………………………46
表2-5 11種喹諾酮類抗菌劑標準曲線之線性方程式及相關係數………………..46
表2-6 添加組織11 種喹諾酮類抗菌劑之回收率…………………………………..49
表2-7 添加喹酮類抗菌劑之精密度確效試驗……………………………………….50
表2-8 添加喹酮類抗菌劑於魚肉之LOD 及LOQ……………………………………..51
表2-9 烏骨雞肉中ENR 及 CIP 殘留………………………………………………..51
表3-1分析18種QNs移動相之梯度設定………………………………..…………..64
表3-2最佳化二次質譜MRM 之參數設定…………………………………………….64
表3-3 相對離子強度之最大可容許範圍…………………………………………….68
表3-4 18種喹諾酮抗菌劑的質譜碎片相對離子強度比……………………………68
表3-5 18種QNs 於吳郭魚(魚片)之基質效應與絕對回收率……………………...72
表3-6 18種QNs於牛奶、魚、蝦、豬肉、雞肉之CCα及CCβ值………………73
表3-7 LC-ESI /MS/MS及 HPLC-FLD方法檢測FAPAS能力試驗結果………………73
表4-1分析ENR、CIP及des-CIP藥物移動相之梯度設定…………………………82
表4-2最佳化二次質譜MRM 之參數設定…………………………………………….82
表4-3 3種喹諾酮類抗菌劑標準曲線之線性方程式及相關係數…………………..90
表4-4 全血添加ENR、CIP、des-CIP回收率及方法精密度……………………….90
表4-5 魚肉添加ENR、CIP、des-CIP回收率及精密度…………………………….90
表4-6 口服給藥後血、腎、肝、胆汁及肉中ENR 的濃度…………………………92
表4-7口服給藥後血、腎、肝、胆汁及肉中CIP的濃度…………………………..92
表4-8 血管注射血、腎、肝、胆汁及肉中 ENR 的濃度……………………………93
表4-9 血管注射 ENR血、腎、肝、胆汁及肉中 CIP濃度…………………………93
表4-10 口服給藥ENR在各組織中CIP轉換率………………………………………94
表4-11 血管注射ENR在各組織中CIP轉換率……………………………………….94
表4-12口服給藥ENR在吳郭魚體內的藥物動力學參數……………………………102
表4-13血管注射給藥ENR在吳郭魚體內的藥物動力學參數………………………102
圖目錄
頁次
圖1-1 18種喹諾酮類藥物結構式……………………………………………………..8
圖1-2 喹諾酮類藥物污染環境可能之途徑……………………………….………….17
圖2-1.11種喹諾酮類抗菌劑 HPLC層析圖…………………………………….…….44
圖2-2 HPLC層析圖(A)空白魚肉 (B)魚肉添加250 ng/g喹酮類抗菌劑…….……48
圖2-3白蝦殘留CIP (21 ng/g)及ENR (368 ng/g) HPLC層析圖..………….…….52
圖2-4烏骨雞殘留CIP (16 ng/g)及ENR (428 ng/g) HPLC層析圖.………….…..52
圖2-5烏骨雞肉LC-MS/MS 層析圖……………………………………………………53
圖3-1 Norfloxacin 之二級質譜圖及質譜碎片可能之裂解途徑……………….….67
圖3-2 NAL於吳郭魚之基質效應………………………………………………….…..69
圖3-3能力試驗魚肉樣品OXO 及FLU之LC/MS/MS離子層析圖……………………74
圖4-1吳郭魚以尾部血管進行注射給藥……………………………………….……..85
圖4-2吳郭魚以塑膠軟管口服投藥…………………………………………….……..85
圖4-3吳郭魚採樣組織(肌肉、肝臟、胆汁及腎臟)…………………………….…..86
圖4-4口服第5天膽汁ENR、CIP及des-CIP 之LC/MS/MS層析圖…………….….97
圖4-5吳郭魚口服給藥(0至24小時)各組織中ENR濃度變化……………….…….98
圖4-6吳郭魚口服給藥(0至168小時)各組織中ENR濃度變化……………………98
圖4-7吳郭魚血管給藥(0至24小時)各組織中ENR濃度變化……………….…….99
圖4-8血管給藥後(0至168小時)組織中ENR濃度變化……………………………99
圖4-9吳郭魚血管給藥ENR後血藥濃度變化…………………………..……………100
圖4-10以WinNonlin預測吳郭魚血管給藥ENR後在血液內的分佈……………..101
圖4-11以WinNonlin預測吳郭魚口服給藥ENR後在血液內的分佈……………..101
參考文獻 References
參考文獻
王信斌、賴宣陽、陳信志、周秀冠。2008。禽畜水產品中動物用藥Quinolone類之殘留量調查。藥物食品檢驗局調查研究年報。26: 295-305.
李俊鎖、邱月明、王超。2002。獸藥殘留分析「喹諾酮類藥物殘留分析」。上海科學技術出版社,中國大陸,上海。p.257-300。
行政院衛生署。2008。動物用藥殘留標準。衛署食字97040692號
行政院衛生署。2002。動物用藥殘留檢驗方法-Quinolone類多重殘留分析。
行政院農業委員會。1996。動物用毒劇藥品品目。85.12.18 85農牧字第85050653A號公告。
行政院農業委員會動植物防疫檢疫局。2006。動物用藥品手冊。http://www.baphiq.gov.tw/public/Data/741117495471.doc.
林峰、林海丹、吳映璇、王芳。2004。LC-MS-MS測定烤鰻中4種氟喹諾酮藥物殘留量。分析測試學報。23: 43-47。
何素鵬、龔培森、王渭賢。1999。高效液相層析法對雞肉與豬肉中殘留Quinolone類抗菌劑之檢測。台灣畜牧獸醫學會會報。69:75-85。
呂車鳳、況慧星、吳永惠。1995。獸醫藥理與治療學(上冊)。藝軒圖書出版社。台北。台灣。p.31-59。
房文紅、鄭國興。2004。水產動物藥物代謝動力學研究概況。中國水產科學。11(4):379-384。
房文紅、鄭國興。2006。肌注和藥餌給藥下諾氟沙星在南美白對蝦血淋巴中藥代動力學。水生生物學報。30:541-546。
房文紅、邵錦華、施兆鴻。2003。斑節對蝦血淋巴中諾氟沙星含量測定及藥代動力學。水產生物學報。27:13-17。
周珮如、李蕙芳、徐麗嵐、蘇淑珠、周薰修。2006。禽畜水產品中動物用藥Quinolone類之殘留量調查。藥物食品檢驗局調查研究年報。24: 345-356。
陳信志、賴宣陽、周秀冠。2007。食品中動物用藥Quinolone類之殘留量調查。藥物食品檢驗局調查研究年報。25: 267-275.
梁增輝、林黎明、劉靖靖、江志剛、官慶禮。2006。恶喹酸和氟甲喹在鰻魚體內的藥代動力學研究。海洋水產研究。27:86-92。
楊先樂、劉至治、孫文欽、蔡完其。2001。中華絨螯蟹血淋巴內鹽酸環丙沙星的反相高效液相色譜法的建立。水產學報。25:348-354。
楊雨輝、佟恆敏、盧彤岩、趙吉偉。2003。環丙沙星在鯉體內吸收、代謝和生物利用度。水產學報。27:582-589。
鄭宗林、唐俊、喻文娟、胡鲲、葉金明、楊先樂。2006。RP-HPLC法測定中華絨螯蟹主要組織中的恩諾沙星及其代謝產物。上海水產大學學報。15: 156-162。
Japan, Compliments of Leffingwell & Associates (2008) Maxium Residue Limits (MRLs) List of Agriculturals in Foods.
http://www.m5.ws001.squarestart.ne.jp /foundation/search.html
Althaus, R, Berruga, M.I., Montero, A., 2009. Evaluation of a Microbiological Multi-Residue System on the detection of antibacterial substances in ewe milk. Anal. Chim. Acta. 632: 156-162.
Ambrose, P.G., Owens, R.C., Quintiliani,R and Nightingale,C.H., 1997. New generations of quinolones: with particular attention tolevofloxacin. Conn Med 61: 269-272
Anadon, A., Martinez-Larranaga, M.R and Diaz, M.J., 1995. Pharmacokinetics and residues of enrofloxacin in chickens. Am.J.Vet.Res. 56: 501-506.
Andresen, A.T., and Rasmussen , K.E., 1990. Automated on-line dialysis and column switching HPLC determination of flumequine and oxolinic acid in fish liver. J.Liq.Chromatogr. 13: 4051-4065.
Andreu, V., Blasco, C and Picó,Y., 2007. Analytical strategies to determine quinolones residues in food and the environment. Trends Anal.Chem. 26: 534-555.
Bailac, S., Ballsteros, O and Barron.D., 2004. Determination of quinolones in chicken tissues by liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. A 1029: 145-151.
Ball, P., 2000. Quinolone generatios: natural history or natural selection. Journal of Antimicrobial Chemotherapy 46 〔Suppl T1〕,17-24.
Barron, M.G., Gedutis, C and James, M.O. 1988. Pharmacokinetics of sulphadimethoxine in the lobster, Homerus americannus, following intrapericardial administration. Xenbiotica 18: 269-277.
Beltran, J.L., Jimenez-Lozano, E and Barron, D., 2004. Determination of quinolone antimicrobial agents in strongly overlapped peaks from capillary electrophoresis using multivariate calibration methods. Anal.Chim.Acta. 501:137.
Bowser, P.R., Wooster, G.A., Stleger, J. and Babish, J.G., 1992. Pharmacokinetics of enrofloxacin in fingerling arinbow-trout (Oncorhynchus mykiss) J. Vet. Pharmacol. Ther. 15: 62-71.
Bordin, G. and Rodriguez, A. R., 2003. Trace enrichment of (fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography-ultraviolet detection. J. Chromatogr. A 1008: 145-155.
Chang, C, S., Wang, W, H. and Tsai, C, E., 2008. Simultaneous Determination of Eleven Quinolones Antibacterial Residues in Marine Products and Animal Tissues by Liquid Chromatography with Fluorescence Detection. J. Food and Drug Analysis.16: 87-96.
Delsol, A.A., Sunderland, J., Woodward, M.J., Pumbwe, L., Piddock, L.J.V. and Roe, J.M., 2004. Emergence of fluoroquinolone resistance in the native Campylobacter coli population of pigs exposed to enrofloxacin. Journal of Antimicrobial Chemotherapy 53: 872–874.
Dimitrova, D., Moutafchieva, R., Kanelov, I., Dinev and Lashev, B. 2007. Pharmacokinetics of pefloxacin and its metabolite norfloxacin in male and female ducks. J. Vet. Pharmacol. Therap. 31:167–170.
Ding, F., Cao, J., Ma, L., Pan, Q., Fang, Z and Lu, X., 2006. Pharmacokinetics and tissue residues of difloxacin in crucian carp ( Carassius auratus ) after oral administration. Aquaculture. 256: 121-128.
Dalsgaad, L. and Bjerregaard, J., 1991. Enrofloxacin as an antibiotic in fish. Acta Vet. Scand. 87: 300-302.
Dufresne, G., Fouquet, A., Forsyth, D. and Tittlemier, S. A., 2007. Multiresidue determination of quinolone and fluoroquinolone antibiotics in fish and shrimp by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 90: 604-612.EU Commission Decision No. 657/2002 .2002.Off. J. Eur. Commun. L221, 8-36.
Durden, A. D. and Macpherson, T., 2007. Quantitation and Validation of fluoroquinolones in egg using liquid chromatography/tandem Mass Spectrometry. J. AOAC Int. 90: 613-625.
EU Commission. Regulation No. 2377/1990 .2006.Off. J. Eur. Commun. L224: 1-8.
Fang, W.H., Zhou,S., Yu, H.J and Liang, S.C., 2007. Pharmacokinetics and tissue distribution of enrofloxacin and its metabolite ciprofloxacin in Scylla serrata following oral gavage at two salinities. Aquaculture. 272: 180-187.
Gellert, M., Sukoneck, S.C., Bello, A., Ge,Z and Grasela, D.M., 1997. Nalidixic acid resistance a second genetic character involved in DNA gyrase activity. Proceedings of the National Academy of Sciences United States of America 74: 4772-4778.
Gigosos, P.G., Revesado, P.R., Cadahia, O and Franco, C.M., 2000. Determination of quinolones in animal tissues and eggs by high-performance liquid chromatograph with photodiode-array detection. J. Chromatogr. A 871: 31-36.
Gore, S.R., Harms, C.A., Kuanich, B., Forsythe, J. and Papich., M.G.., 2005. Enrofloxacin pharmacokinetics in the European cuttlefish, Sepia officinalis, after a single i.v. injection and bath administration. J. Vet. Pharmacol. Ther. 28: 433-439.
Guo, L., Xie, Z., Lin., X . and Zhang Y. 2005. Pharmacokinetics of ciprofloxacin in eels by high-performance liquid chromatography with fluorescence detection. Analytical Biochemistry. 341: 275-279.
Hansen, M.K. and Horsberg, T.E., 2000. Single pharmacokinetics of flequine in cod (Gadus morhua ) and goldsinny wrasse (Ctenolabrus rupestris). J Vet. Pharmacol .Ther. 23: 163-168.
Hatano, K., 2004. Simultaneous determination of quinolones in foods by LC/MS/MS. J. Food Hyg. Soc. Japan 45: 239-244. (in Japanese).
Hermo, M. P., Barron, D. and Barbosa, J., 2006. Development of analytical methods for multiresidue determination of quinolones in pig muscle samples by liquid chromatography with ultraviolet detection, liquid chromatography-mass spectrometry. J. Chromatogr. A 1104: 132-139.
Hermo, M. P., Barron, D. and Barbosa, J., 2006. Confirmatory and quantitative analysis using experimental design for the extraction and liquid chromatography–UV, liquid chromatography–mass spectrometry and liquid chromatography–mass spectrometry /mass spectrometry determination of quinolones in turkey muscle. J. Chromatogr. A 1135: 170-178.
Hermo, M. P., Nemutlu, E. and Kir, S., 2008. Improved determination of quinolones in milk at their MRL levels using LC-UV, LC-FD, LC/MS and LC/MS/MS and validation in line with regulation 2002/657/EC. Anal. Chim. Acta. 613: 98-107
Hoof, N.V., Wasch, K. D and Reybroeck, S. P., 2005. Validation of a liquid chromatography-tandem mass specyromertic method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products. Anal. Chim. Acta. 529: 265-272.
Horie, M., Saito, K., Nose, N. and Nakazawa, H., 1995. Simultaneous determination of eight quinolone antibacterials in meat and fish by high performance liquid chromatography. J. Food Hyg. Soc. Japan 36: 62-67. (in Japanese).
Horie, M., Saito, K., Hoshino, Y., Nose, N., Mochizuki, E. and Nakazawa, H., 1987. Simultaneous determination of nalidixic acid, oxolinic acid and piromidic acid in fish by high performance liquid chromatography with fluorescence and ultraviolet detection. J. Chromatogr. A 402: 301-308.
Hormazabal, V and Yndestad., 1994. Simultaneous extraction and determination of oxolinic acid and flumequine in fish sialage by HPLC. J.Liq.Chromatogr. 17: 2901-2909.
Intorre, L., Cecchini, S and Bertini, S., 2000. Pharmacokinetics of enrofloxacin in the seabass ( Dicentrarchus labrax ) .Aquaculture. 182: 49-59
Ishida, N., 1992. Tissue levels of oxolinic acid after oral or intravascular administration to freshwater and seawater rainbow. Aquat Toxicol. 102: 9-15.
ISO Standard No.11843-2 .2000.Capability of Detection, Part 2: Methodology in the Linear Calibration Case, International Organization for Standardization, Geneva, Switzerland.
Ito, A.M., Hirai, M., Inoue, H., Koga, S and Mitsuhashi., 1980. In vito antibacterial activity of AM-715, a new nalidixic acid along. Antimicrob Agents Chemother 17: 103-108.
Johnston, L., Mackay, L and Croft, M., 2002. Determination of quinolones and fluoroquinolones in fish tissue and seafood by high-performance liquid chromatography with electrospray ionization tandem mass spectrometric detection. J. Chromatogr. A 982: 97-109.
Joint FAO/WHO Expert Committee on Food Additives (JECFA).1997. Residues of certain veterinary drugs in foods, a summary of the conclusions of the Joint FAO/WHO Expert Committee on Food Additives at 48th meeting. Geneva. 18-27.
Kim. M.S., Lim, J.H., Park, B.K., Hwang, Y.H. and Yun, H.J., 2006. Pharmacokinetic of enrofloxacin in Korean catfish (Silurus asotus). J. Vet. Pharmacol. Ther. 29:397-402.
Knoll, U., Glunder, G.. and Kietzmann. M., 1999. Comparative study of the plasma pharmacokinetics and tissue concentrations of danofloxacin and enrofloxacin in broiler chickens. J. Vet. Pharmacol. 22: 239-246.
Koc, F., Uney, K., Atmanalp, M., Tumer, I. and Koban, G.., 2009. Pharmacokinetic disposition of enrofloxacin in brown trout (Salmo trutta fario) after oral and intravenous administrations. J. Vet. Pharmacol. Ther. xxx:xxx-xxx .(in press).
Kung, K., Riond, J.L. and Wanner, M., 1993. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intravenous and oral adminstration of enrofloxacin in dogs. J. Vet. Pharmacol. 16:462-468.
Lesher,G.Y., Foelich,E.J and Gruett, M.D., 1962. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. Journal of Medical Pharmacy and Chemistry 91: 1063-1065.
Lewbart, G., Vaden, S., Deen, J. and Flammer, K., 1997. Pharmacokinetics of enrofloxacin in the red pacu (Colossoma brachypomum) after intramuscular, oral and bath adminstration. J. Vet. Pharmacol. Ther. 20: 124-128.
Lucchetti,D.L., Fabrizi, E., Guandalini, E., Podesta, L., Marvasi, A and Coni, E., 2004. Long depletion time of enrofloxacin in rainbow trout (Oncorhynchus mykiss). Antimicrob Chemother 48: 3912-3917.
Maraschiello, C., Cusido, E., Abellan, M. and Vilageliu, J., 2001. Validation of an analytical
procedure for the determination of fluoroquinolone ofloxacin in chicken tissues. J. Chromatogr. B 754: 311-318.
Marazuela, M. D. and Moreno-Bondi, M. C., 2004. Multiresidue determination of fluoroquinolones in milk by column liquid chromatography with fluorescence and ultraviolet absorbance detection. J. Chromatogr. A. 1034: 25-32.
Norris, S., Mandell, G..L., 1988.In the Quinolones: history and overview. P.1-22 in Andriole V.T. ed. The Quinolones. Academic Press Inc. Sa Diego. USA.
Okerman,L, Hoof, J.V., Debeuckelaere, W. K., 1998. Evaluation of the European four-plate test as a tool for screening antibiotic residues in meat samples from retailoutlets. AOAC. Int. 81:51-56.
Paich, M.G., Riviere, J.E., 2001. Fluoroquinolone antimicrobial drugs. In: Adams, H.R., (Ed)., Veterinary pharmacology and Therapeutics. Iowa State University Press. Ames, IA., Chapter 45. 8th Edit., pp. 898-917.
Plakas, S.M., El Said, K.R. and Musser, S.M., 2000. Pharmacokinetics, tissue distribution, and metabolism of flumequine in channel catfish (Ictalurus punctatus). Aquaculture. 187: 1-14.
Poher, I ., Blanc G.., 1998. Pharmacokinetics of a discontinuous absorption process of oxolinic acid in turbot, Scophthalmus americanus, after a single oral administration. Xenbiotica, 28: 1061-1073.
Posyniak, A., Zmudzki, J., and Semeniuk, S., 2001. Effect of matrix and sample preparation on determination of fluoroquinolone residues in animal tissues. J. Chromatogr. A 914: 89-94.
Ramos, M., Aranda, A., Garcia, E., Reuvers T. and Hooghuis H. , 2003. Simple and sensitive determination of five quinolones in food by liquid chromatography with fluorescence detection. J. Chromatogr. B 789: 373-381.
Rocca, G.D., Salvo, A.D and Malvisi, J., 2004. The disposition of enrofloxacin in seabream ( Sparus aurata L. ) after single itravenous injection or from medicated feed administration. Aquaclture 232: 53-62.
Romos, M., Aranda, A., Garcia, E., Reuvers, T., and Hooghusis, H., 2003. Simple and sensitive determination of five quinolone in food by liquid chromatography with fluorescence detection. J. Chromatogr. B 789: 373-381.
Roybal, J., Walker, C.C., Pfenning, A.P., Turnipseed, S.B., Storey J.M., Gonzales, S.A. and Hurlbut, J.A., 2002. Concurrent determination of four fluoroquinolones in catfish, shrimp, and salmon by liquid chromatography with fluorescence detection. J. AOAC Int. 85: 1293-1301.
Samanidou, V., Evaggelopoulou, E. and TrÖtzmüller, M., 2008. Multi-residue determination of seven quinolones antibiotics in gilthead seabream using liquid chromatography-tandem
mass spectrometry. J. Chromatogr. A 1203: 115-123.
Samuelesen, O.B., Ervik, A., Pursell, L. and Smith, P., 2000. Single-dose pharmacokinetics study of oxolinic acid and vetoquinol, an oxolinic acid ester, in cod (Gadus morhua L.) held in seawater at 8 ℃ and in vitro antibacterial activity of oxolinic acid against some Vibrio sp isolated from disease cod. J. Fish Dis. 26: 339-347.
Samuelesen, O.B., 2006. Pharmacokinetics of quinolones in fish : A review. Aquaculture. 255: 55-75.
Schneider, M.J. and Donoghue, D. J., 2003. Multiresidue determination of fluoroquinolone antibiotics in eggs using liquid chromatography–fluorescennce -mass spectrometryn. Anal. Chim. Acta. 483: 39-49.
Scortichini, G, Annunziatia L and Girolamo, V.D., 2009. Validation of an enzyme-linked immunosorbent assay screening for quinolones in egg, poultry muscle and feed samples. Anal. Chim. Acta. 637: 273-282.
Stoffregen, D.A., Wooster, G..A., Bustos, P.S. and Babish, J.G.., 1997. Multiple route and dose pharmacokinetics od enrofloxacin in juvenile Atlantic salmon. J. Vet. Pharmacol. Ther. 20: 111-123.
Su, S. C., Chang, M. H., Chang, C. L. and Chang, P. C., 2003. Simultaneous determination of quinolones in livestock and marine products by high performance liquid chromatography. J. Food and Drug Analysis. 11: 114-127.
Tang, J., Yang, X.L. and Zheng, Z.L., 2006. Pharmacokinetics and the active metabolite of enrofloxacin in Chinese mitten-handed crab ( Eriocheir sinensis ). Aquaculture 260: 69-76
Toussaint, B., Bordin, G and Janosi, A., 2002. Validation of a liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of 11 (fluoro)quinolone antibiotics in swine kidney. J. Chromatogr. A 976: 195-206.
Toussaint, B., Chedin, M and Bordin, G.., 2005. Determination of (fluoro)quinolones antibiotic residues in pig kidney using liquid chromatography–tandem mass spectrometry. Ι. Laboratory-validated method. J. Chromatogr. A 1088: 32-39.
Toussaint, B., Chedin, M and Bordin, G.., 2005. Determination of (fluoro)quinolones antibiotic residues in pig kidney using liquid chromatography–tandem mass spectrometry. PartⅡ. Intercomparison exercise. J. Chromatogr. A 1088: 40-48.
US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine for Veterinary Medicine (CVM): Guidance for Industry, Bioanalytical Method Validation, May 2001. Available from: http://www.fda.gov/cder/guidance/index.htm.
U.S. Food and Drug Administration (2005) Fed. Reg. 70, Docket No. 2000N-1571, August Uno, K., 1996. Pharmacokinetics study of oxytracycline in healthy and vibriosis-infection ayu (Plecoglosus altinelis). Aquaculture. 143: 33-42.
Verdon, E., Couedor, P., Roudaut, B. and Sanders, P., 2005. Multiresidue method for simultaneous determination of ten quinolones antibacterials residues in multimatrix/multispecies animal tissues by liquid chromatography with fluorescence detection: single laboratory validation study. J. AOAC Int. 88: 1179-1192.
Wang, Q., Liu, Q. and Li, J., 2008. Tissue distribution and elimination of norfloxacin in Japanese sea perch (Lateolabras japonicus) and black sea bream (Sparus macrocephalus) following multi-oral administration. Aquaculture. 278: 1-4.
Wu, G., Meng., Y., Zhu, X. and Huang, C., 2006. Pharmacokinetics and tissue distribution of enrofloxacin and its metabolite ciprofloxacin in the Chinese mitten-handed crab, Eriocheir sinesis. Anal.Biochem. 358: 25-30.
Yang, G., Lin, B., Zeng, Z., Chen, Z. and Huang, X., 2005. Multiresidue determination of eleven quinolones in milk by liquid chromatography with fluorescence detection. J. AOAC Int. 88: 1688-1694.
Zechiedrich, E.L. and Cozzarelli, N.R., 1995. Roles of topoisermase Ⅳ and DNA gyrase in DNA unlinking during replication in Escheri coli. Genes and Development 9: 2859-2869.
Zhaos, S., Jiang, H., Li ,X., Mi, T., Li, C. and Shen, J., 2007. Simultaneous determination of trace levels of 10 quinolones in swine, chicken, and shrimp muscle tissues using HPLC with programmable fluorescence detection. J. Agric Food Chem. 55: 3829-3834.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code