Responsive image
博碩士論文 etd-0821112-105041 詳細資訊
Title page for etd-0821112-105041
論文名稱
Title
石化工業區空氣中揮發性有機物與含硫異味物質季節變化趨勢及污染源排放特徵之相關性分析
Seasonal Variation of Ambient Volatile Organic Compounds and Sulfur-containing Odors Correlated to the Emission Sources of Petrochemical Complexes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
191
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-15
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
化學質量平衡受體模式、主成份分析(PCA)、時空分佈、含硫異味物質、揮發性有機物(VOCs)、指紋特徵、污染源解析
chemical mass balance receptor model, characteristics and fingerprints, volatile organic compounds (VOCs), sulfur-containing odorous matters (SOMs), temporal and spatial distribution, source apportionment, principal component analysis (PCA)
統計
Statistics
本論文已被瀏覽 5704 次,被下載 1207
The thesis/dissertation has been browsed 5704 times, has been downloaded 1207 times.
中文摘要
鄰近北高雄人口密集地區之石化及石油煉製業工廠,主要位於中油公司高雄煉油廠、仁武工業區及大社工業區。近年來,雖有不少學者曾於上述區域進行相關研究,但仍受限於缺少相關資料(如:異味物質鑑定及VOCs指紋資料庫)加以佐證,致無法明確判斷導致空氣污染之具體原因。藉由空氣污染物採樣規劃及完整分析,將可瞭解北高雄地區石化工業區之主要污染源種類及其貢獻率,俾提供環保相關單位擬定環境空氣品質管理及管制對策之參考。
本研究針對中油公司高雄煉油廠、仁武工業區及大社工業區之主要石化產區及鄰近區域,執行工業區周界揮發性有機物及含硫異味物質採樣,與製程排放管道進行同步採樣,乾、濕兩季期間採樣時間規劃於2011年1月7日、14日、19日(乾季)與2011年5月6日、13日、23日(濕季)進行採樣,建置製程管道排放污染源排放資料庫,瞭解VOCs指紋特徵,並推估各排放管道之排放係數,期能藉以瞭解此區域內空氣污染物時空分佈特性及主要污染源種類及貢獻率。
中油公司高雄煉油廠製程排放管道檢測出之VOCs物種均以甲苯及丙酮為主,顯示石油煉製製程具有相似之指紋特徵;而仁武及大社工業區之排放管道,其主要污染物物種則隨著不同製程而有明顯差異。含硫異味物質方面,各工業區皆以硫化氫為主,而仁武工業區製程排放管道含有物種較多且濃度較高的含硫異味物質。
由石化廠區周界之VOCs檢測結果顯示,以異丁烷、正丁烷、異戊烷、正戊烷、丙烷等烷類化合物,丙烯等烯類化合物,甲苯、乙苯、二甲苯、苯乙烯等苯環類化合物,2-丁酮、丙酮等醛酮類化合物為主要VOCs物種。另外,乙烯+乙炔+乙烷(C2)、1,2-二氯乙烷、氯甲烷、二氯甲烷、甲基三級丁基醚(MTBE)等其他類化合物,亦為偶而發現的污染物。含硫異味物質檢測結果顯示,主要異味污染物包括硫化氫、甲硫醇、一甲基硫、二硫化碳等,並以硫化氫的濃度較高,其可檢測出的硫化氫濃度最高可達5.5 ppbv。
本研究將工業區污染物種類分為烷類、烯類、苯環類、醛酮類與其他類等,探討各類污染物之時空分佈特性,主要隨近地面之盛行風向所推送,往污染源下風處擴散傳送,以烷類、苯環類、醛酮類之污染物傳輸最為明顯,不過普遍在風速不高的情形下,各類污染物的顯著影響範圍仍以鄰近石化廠區周界附近為主要影響區域,顯示製程管道排放污染源與逸散污染源對鄰近區域空品優劣具有重要貢獻。另就總含硫異味物質與硫化氫之時空分佈特性而言,其仍以鄰近石化廠區周界附近的濃度較高,顯示相關污染物應以來自石化製程本身的貢獻為主。
由主成份分析結果顯示,石化工業區周界不論乾季或濕季,主要受製程管道排放及逸散性污染源之影響,交通污染源居次;受體模式模擬結果顯示,乾濕季平均之中油公司高雄煉油廠的製程管道排放來源貢獻率約為48 %,逸散性污染源約為30 %,移動污染排放源約為11 %;仁武工業區的製程管道排放來源貢獻率約為75 %,逸散性污染源約為17 %,移動污染排放源約為5 %;大社工業區的製程管道排放來源貢獻率約為68 %,逸散性污染源約為21 %,移動污染排放源約為2 %。
Abstract
Neighboring northern Kaohsiung with a dense population of petrochemical and petroleum industrial complexes included China Petroleum Company (CPC) refinery plant, Renwu and Dazher petrochemical industrial plants. In recent years, although many scholars have conducted regional studies, but are still limited by the lack of relevant information evidences (such as odorous matters identification and VOCs fingerprint database), while unable to clearly identify the causes of poor ambient air quality. By sampling and analyzing VOCs, we will be able to understand the major sources of VOCs in northern Kaohsiung and their contribution, and to provide the air quality management and control countermeasures for local environmental protection administration.
In this study, we sampled and analyzed the speciation of VOCs and sulfur-containing odorous matters (SOMs) in the CPC refinery plants, Renwu and Dazher petrochemical complexes simultaneously with stack sampling. The sampling of VOCs and SOMs were conducted on January 7th, 14th, and 19th, 2011 (dry season) and May 6th, 13rd, and 23rd, 2011 (wet season). We established the emission source database, investigated the characteristics of VOC fingerprints, and estimate the emission factor of each stack. It helps us understand the temporal and spatial distribution of VOCs and ascertain major sources and their contribution of VOCs.
Major VOCs emitted from the stacks of the CPC refinery plant were toluene and acetone. It showed that petroleum refinery processes had similar VOCs characteristics and fingerprints. The fingerprints of stack emissions at Renwu and Dashe industrial complexes varied with their processes. Hydrogen sulfide was the major sulfur-containing odorous matter in all petrochemical plants. Compared to other petrochemical complexes, Renwu industrial complex emitted a variety of SOMs species as well as relatively high concentrations of sulfur-containing odorous matters.
The petrochemical industrial complexes in the industrial ambient of VOCs analysis results showed that isobutane, butane, isopentane, pentane, propane of alkanes, propene of alkenes, toluene, ethylbenzene, xylene, styrene of aromatics, 2-Butanone (MEK), acetone, of carbonyls are major species of VOCs. In addition, ethene+acetylene+ethane (C2), 1,2-dichloroethane, chloromethane, dichloromethane, MTBE were also occasionally found. Sulfur-containing odorous matter (SOMs) analytical results showed that major odorous matters included hydrogen sulfide, methanethiol, dimethyl sulfide, and carbon disulfide. The highest hydrogen sulfide concentration went up to 5.5 ppbv.
In this study, the species of VOCs were divided into alkanes, alkenes, aromatics, carbonyls, and others. The temporal and spatial distribution of various types of VOCs strongly correlated with near-surface wind direction. The most obvious contaminants were alkanes, aromatics, and carbonyls of the dispersion to the downwind. Generally, the ambient air surrounding the petrochemical industrial complexes was influenced by various pollutants in the case of high wind speeds. It showed that stack emission and fugitive sources had an important contribution to ambient air quality. TSOMs and hydrogen sulfide emitting mainly from local sources resulted in high concentration of TSOMs and hydrogen sulfide surrounding the petrochemical industrial complex.
Principal component analysis (PCA) results showed that the surrounding areas of petrochemical industrial complexes, regardless of dry or wet seasons, were mainly influenced by the process emissions and solvent evaporation. The impact of traffic emission sources ranked the second. Chemical mass balance receptor modeling showed that stack emissions from the CPC refinery plants contributed about 48 %, while fugitive emission sources and mobile sources contributed about 30 % and 11%, respectively. The stack emissions from Renwu industrial complex contributed about 75 %, while fugitive emission sources and mobile sources contributed about 17 % and 5 %, respectively. The stack emissions from Dazher industrial complex contributed about 68 %, while fugitive emission sources and mobile sources contributed about 21 % and 2 %, respectively.
目次 Table of Contents
論文審定書................................................................................................ I
謝誌............................................................................................................ II
中文摘要.................................................................................................... III
英文摘要.................................................................................................... V
目錄............................................................................................................ VII
表目錄........................................................................................................ X
圖目錄........................................................................................................ XIII
第一章 前言............................................................................................ 1
1-1 研究緣起..................................................................................... 1
1-2 研究目的..................................................................................... 2
1-3 研究範圍及架構......................................................................... 2
第二章 文獻回顧.................................................................................... 4
2-1 揮發性有機物與含硫異味物質之特性..................................... 4
2-1-1 揮發性有機物與含硫異味物質之定義............................ 4
2-1-2 揮發性有機物之來源........................................................ 6
2-1-3 含硫異味物質之來源........................................................ 12
2-1-4 揮發性有機物與含硫異味物質對人體健康之影響........ 17
2-2 石化工業區排放空氣污染物種類............................................. 21
2-2-1 石化工業區排放揮發性有機物種類................................ 21
2-2-2 石化工業區排放含硫異味物質種類................................ 27
2-3 揮發性有機物與含硫異味物質之管制..................................... 28
2-3-1 固定污染源設置與操作許可證管理辦法........................ 28
2-3-2 固定污染源空氣污染物排放標準.................................... 28
2-3-3 固定污染源空氣污染物連續自動監測設施管理辦法.... 29
2-3-4 揮發性有機物空氣污染管制及排放標準........................ 30
2-3-5 異味污染物為空氣污染物................................................ 30
2-4 高雄地區氣象及空氣品質現況................................................. 30
2-4-1 高雄地區氣象條件現況.................................................... 30
2-4-2 高雄地區空氣品質現況.................................................... 32
2-5 污染源解析模式之應用............................................................. 35
2-5-1 主成份分析法(Principal Component Analysis)................ 35
2-5-2 化學質量平衡受體模式(CMB Receptor Model )............ 36
第三章 研究方法.................................................................................... 40
3-1 石化工業區氣象監測資料分析................................................. 40
3-2 揮發性有機物與含硫異味物質採樣規劃................................. 41
3-2-1 製程排放管道採樣規劃.................................................... 41
3-2-2 周界採樣規劃.................................................................... 43
3-3 製程排放管道與周界採樣方法與設備..................................... 45
3-3-1 製程排放管道採樣方法與設備........................................ 45
3-3-2 周界採樣方法與設備........................................................ 45
3-4 污染物分析原理、方法與設備................................................. 46
3-4-1 揮發性有機物分析............................................................ 46
3-4-2 含硫異味物質分析............................................................ 54
3-5 指紋資料庫之建置與排放係數推估......................................... 56
3-6 品保與品管(QA/QC) ................................................................. 57
3-6-1 Tedlar採樣袋空白測試..................................................... 57
3-6-2 揮發性有機物分析之品保與品管.................................... 58
3-6-3 含硫異味物質分析之品保與品管.................................... 60
3-7 污染物擴散及化學質量平衡受體模式解析............................. 61
3-7-1 污染物濃度時空分佈........................................................ 61
3-7-2 主成份分析法.................................................................... 61
3-7-3 化學質量平衡受體模式.................................................... 63
第四章 結果與討論................................................................................. 65
4-1 採樣期間北高雄地區氣象條件分析......................................... 65
4-1-1 乾季採樣期間.................................................................... 65
4-1-2 濕季採樣期間.................................................................... 66
4-2 石化工業區製程排放管道污染物種類及濃度分析結果探討. 79
4-2-1 中油公司高雄煉油廠........................................................ 79
4-2-2 仁武工業區........................................................................ 82
4-2-3 大社工業區........................................................................ 86
4-3 乾季石化工業區周界污染物濃度分析結果探討..................... 90
4-3-1 石化工業區VOCs與SOMs分佈趨勢............................. 90
4-3-2 中油公司高雄煉油廠周界分佈趨勢................................ 95
4-3-3 仁武工業區周界分佈趨勢................................................ 100
4-3-4 大社工業區周界分佈趨勢................................................ 105
4-4 濕季石化工業區周界污染物濃度分析結果探討..................... 110
4-4-1 石化工業區VOCs與SOMs分佈趨勢............................. 110
4-4-2 中油公司高雄煉油廠周界分佈趨勢................................ 115
4-4-3 仁武工業區周界分佈趨勢................................................ 120
4-4-4 大社工業區周界分佈趨勢................................................ 125
4-5 石化工業區污染源解析............................................................. 130
4-5-1 主成份分析法判別主要污染源種類................................ 130
4-5-2 化學質量平衡法解析污染源貢獻率................................ 138
第五章 結論與建議................................................................................ 154
5-1 結論............................................................................................. 154
5-2 建議............................................................................................. 156
參考文獻.................................................................................................... 157
附錄A 揮發性有機物分析之品保品管............................................... 167
附錄B 含硫異味物質分析之品保品管............................................... 172
參考文獻 References
Atkinson, R., “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmospheric Environment, 41, 200-240, 2007.
Benjamin, M., Sudol, M., Bloch, L., and Winer, A.M. “Low-emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rate,” Atmospheric Environment, 30, 1437- 1452, 1996.
Borbon, A., Locoge, N., Veillerot, M., Galloo, J.C. and Guillermo, R. “Characterisation of NMHCs in a French urban atmosphere: overview of the main sources,” The Science of Total Environment 292, 177-191, 2002.
Cohen, M.A., Ryan P.B., Spengler J.D., Özkaynak H., and Hayes C. “Source-receptor study of volatile organic compounds and particulate matter in the Kanawha Valley, WV—II. Analysis of factors contributing to VOC and particle exposures,” Atomsphere Environment, 25B, 95-107, 1991.
Conner, T.L., Collins J.F., Lonneman W.A., and Seila R.L. “Comparison of Atlanta emissions inventory with ambient data using chemical mass balance receptor modeling,” EPA/A&WMA, Pittsburgh, PA, 147-158 , 1994.
Chang, C.C., Lo, J.G., and Wang, J.L. “Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel,” Atmospheric Environment, 35, 6201-6211, 2001.
Chang, K.H., Chen, T.F., and Huang, H.C. “Estimation of biogenic volatile organic compounds emissions in subtropical island–Taiwan,” The Science of Total Environment, 346, 184-199, 2005.
Chiang, H.L., Tsai, J.H., Chen, S.Y., Lin, K.H., and Ma, S.Y. “VOC concentration profiles in an ozone non-attainment area: A case study in an urban and industrial complex metroplex in southern Taiwan,” Atmospheric Environment, 41(9), 1848-1860, 2007.
Derwent, R.G., Middleton, D.R., Field, R.A., Goldstone, M.E., Lester, J.N., and Perry, R. “Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992,” Atmospheric Environment, 29, 923-946, 1995.
Derwent, R.G., Davies, T.J., Delaney, M., Dollard, G.J., Field, R.A., Dumitrean, P.,Nason, P.D., Jones, B.M.R., and Pepler, S.A. “Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996,” Atmospheric Environment, 34, 297-312, 2000.
Doskey, P.V., Fukui, Y., and Sultan, M. “Source Profiles for Nonmethane Organic Compounds in the Atmosphere of Cairo, Egypt,” Journal Air & Waste Management Association, 49:814-822, 1999.
Edwards W.C., “VOC emissions from major organic chemical plants in Canada,” 84th Annual Meeting of Air & Waste Management Association, B.C, Columbia, 1991.
Fujita, E.M., Waston J.G., Chow J.C., and Lu Z. “Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California Air Quality Study,” Environment Science Technology, 28, 1633-1649 ,1994.
Fujita, E.M., Lu Z., Sheetz L., Harshfield G., Hates T., and Zielinska B. “Hydrocarbon source apportionment in Western Washington,” Prepared for State of Washington Department of Ecology, Lacy. WA, Desert Research Institute, Reno, NV, 1997.
Fujita, E.M., Waston, J.G., Chow, J.C., Robinson, N.F., Richards, L.W., and Kumar, N. “Northern Front Range Air Quality Study Final Report Volume C: Source Apportionment and Simulation Methods and Evaluation,” Fort Collins, CO, Desert Research Institute, Reno, NV, 1998.
Fujita, E., and Lu Z. “Analysis of Data From the 1995 NARSTO-Northeast Study. Volume III: Chemical Mass Balance Receptor Modeling,” Draft final report prepared for Coordinating Research Council, Atlanta, GA, 1998.
Guenther, A. and Hills, A.J. “Eddy covariance measurement of isoprene fluxes,” Journal of Geophysical Research, 103, 1998.
Harkov, R., “Measurement of selected volatile organic compounds at three locations in New Jersey during the summer season,” Journal of Air Pollution Control Association, 33, 1177-1183, 1983.
Hopke, P.K., “Receptor Modeling for Air Quality Management,” Elsevier Science Publishers, Amsterdam, 315p, 1991
Harley, R.A., Hannigan, M.P., and Cass, G.R. “Respeciation of organic gas emissions and the detection of excess unburned gasoline in the atmosphere,” Environment Science Technology, 26, 2395-2408, 1992.
Ho, K.F., Lee, S.C., and Chiu, G.M.Y. “Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station,” Atmospheric Environment 36, 57-65, 2002.
Hodgson, A.T., Faulker, D., Sullivan, D.P., DiBartolomeo, D.L., Russell, M.L., and Fisk, W.J. “Effect of outside air ventilation rate on volatile organic compound concentrations in a call center,” Atmospheric Environment 37, 5517-5527, 2003.
Hector, J. and Bernhard, R. “Receptor modeling of ambient VOC at Santiago, Chile,” Atmospheric Environment, 38, 4243-4263, 2004.
Kelly, T.J., “Air pollutant monitoring and health risk assessment in Allen Country-Lima,”85th Annual Meeting and Exhibition of Air & Waste management Association, Kansas City, 1992.
Kenski, D.M., Wadden, R.A., Scheff, P.A., and Lonneman, W.A. “Receptor modeling approach to VOC emission inventory validation,” Journal of Environment Enginering, 121, 483-491, 1995.
Kotesva, K. and Popov T. “Study of the cardiovascular effects of occupational exposure to organic solvents,” International Archives of Occupational and Environmental Health, 71, 87-91, 1998.
Lin, T.Y., Sree, U., Tseng, S.H., Chiu, K.H., Wu, C.H., and Lo, J.G. “Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan,” Atmospheric Environment, 38(25), 4111-4122, 2004.
Levaggi, D.A. and Siu, W. “Gaseous toxics monitoring in the San Francisco Bay Area: a review and assessment of four years of data,” 84th Annual Meeting of Air & Waste Management Association, Vancouver, B.C., Columbia, 1991.
Lin, C. and Milford, J.B. “Decay-adjusted chemical mass balance receptor modeling for volatile organic compounds,” Atmosphere Environment, 28, 3261-3276, 1994.
Molhave, L., “Volatile organic compounds, indoor air quality and health,” Indoor Air, 1, 357-376, 1991.
O’shea, W.J. and Scheff, D.A. “A Chemical Mass Balance for Volatile Organics in Chicago,” Journal of Air Pollution Control Association, 38, 1020-1026, 1998.
Pires, J.C.M., Pereira, M.C., Alvim-Ferraz, M.C.M., and Martins, F.G. “Identification of redundant air quality measurements through the use of principal component analysis,” Atmospheric Environment, 43, 3837-3842, 2009.
Ruth, J.H., “Odor thresholds and irritation levels of several chemical substances: A review,” American Industrial Hygiene Association Journal, 47, A142-A151, 1986.
Rahill, A.A., Weiss, B., Morrow, P.E., Frampton, M.W., Cox, C., Gibb, R., Gelein, R., Speers, D., and Utell, M.J. “Human performance during exposure to toluene,” Aviation Space and Environmental Medicine, 67, 640-647, 1996.
Serjak, W.C., Day, W.H., Van, L.J.M., and Boruff, C.S. “Acrolein: Ambient Water Quality Criteria,” National Service Center for Environmental Publications (NSCEP), 1966.
Scheff, P.A. and Porter, J.A. “Improvement of VOC source fingerprints for vehicles and refineries,” 84th Annual Meeting of Air & Waste Management Association, 16-21, Canada, 1991.
Tsai, J.H., Hsu, Y.C., and Yang, J.Y. “The relationship between volatile organic profiles and emission sources in ozone episode region-a case study in Southern Taiwan,” The Science of Total Environment, 328(1-3):131-42, 2004.
Tandon, A., Yadav, S., and Attri, A.K., “City-wide sweeping a source for respirable particulate matter in the atmosphere,” Atmospheric Environment, 42, 1064-1069, 2008.
U.S. Environmental Protection Agency, “1990 Amendments to the Clean Air Act,” http://www.epa.gov/air/caa/index.html, 1990.
U.S. Environmental Protection Agency, Compilation of Air Pollutant Emission Factors, Table of Contents, AP-42, Volume I, Fifth Edition, http://www.epa.gov/ttn/chief/ap42/index.html, 2004.
Wadden, R.A., “Source discrimention of short-term hydrocarbon samples measured aloft,” Environment Science & Technology, 20(5), 206-208, 1986.
Wang, H.K., Huang, C.H., Chen, K.S., Peng, Y.P., and Lai, C.H., “Measurement and source characteristics of carbonyl compounds in the atmosphere of Kaohsiung City, Taiwan,” Journal of Hazardous Materials, 179, 1115-1121, 2010.
江森雄,『石化工業區揮發性有機氣體改善管理之研究-以頭份工業區為例』,中華大學工業工程與管理研究所碩士論文,2000。
洪正宗,蕭秀雄,黃登祥,陳正文,陳國棟,『煤組油C9中1.2.4-三甲基苯之分離及應用』,石油季刊,36(3),pp.27~33,2000。
行政院環保署,『異味污染物為空氣污染物』,空氣污染防制4502號法規,2007。
行政院環保署,『揮發性有機物空氣污染管制及排放標準』,空氣污染防制0162號法規,2011。
行政院環保署,『國內建議優先列管30種有害空氣污染物』,行政院環保署五年中程施政計畫,1994。
行政院環保署環境保護人員訓練所,『臭味及有害空氣污染物控制』,甲級空氣污染防制專責人員訓練教材,周明顯修訂,2001。
行政院環保署,『惡臭防制技術參考手冊(I-IV) 』環保署翻譯,1988。
行政院環保署,『石化業空氣污染防制輔導』,固定污染源空氣污染防制技術輔導案例及執行成效彙編,2011
行政院環保署,『固定污染源設置與操作許可證管理辦法』,空氣污染防制0040號法規,2007。
行政院環保署,『固定污染源空氣污染物排放標準』,空氣污染防制0070號法規,2011。
行政院環保署,『固定污染源空氣污染物連續自動監測設施管理辦法』,空氣污染防制0570號法規,2003。
行政院環保署,『空氣污染防制法-空氣污染防制法施行細則』,中華民國92 年7 月修訂,2006。
吳明泰,『南高屏地區空氣品質監測站揮發性有機物成份與排放源區之關聯性研究』,國立成功大學碩士論文,1999。
吳宗錚,『高速公路上移動源之氣狀污染物排放組成與光化反應特性』,雲林科技大學環境與安全工程研究所碩士論文,2001。
吳立言,『高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討』,國立中山大學環境工程研究所碩士論文,2002。
吳俊毅,『高雄市大氣中醛酮類化合物之濃度特徵及時空分布調查分析』,國立中山大學環境工程研究所碩士論文,2007。
吳義林,林清和,『廢氣燃燒塔與鍋爐之揮發性有機物排放係數建置』,行政院國科會專題研究計畫,2007。
吳靜怡,『含硫異味物質之化學及生物氧化』,國立中山大學環境工程研究所碩士論文,2009。
吳仲翼,『廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討』,國立中山大學環境工程研究所碩士論文,2011。
陳木鄰,『運用CMB模式配合分析與調查探討都會區之碳氫化合物來源與特性』,逢甲大學碩士論文,2002。
陳康興、周明顯,『九十三年度空氣品質監測站污染源來源分析計畫』研究計畫書,國立中山大學環境工程研究所,2004。
陳玟妏,『高雄市臭味調查及改善』,國立中山大學環境工程研究所碩士論文,2006。
陳佳伶,『石化工業區VOCs物種及排放量推估』,輔英科技大學環境工程與科學系碩士論文,2007。
李國璋,『應用開徑式UV-DOAS量測高雄國際機場航道下環境空氣品質之研究』,國立中山大學環境工程研究所碩士論文,2009。
李中光,『淺談煉油廠惡臭污染防治』,桃園大學校院產業環保技術服務團環保簡訊,萬能科技大學環境工程系,2010。
楊峰杰,『以因子分析法探討高雄市大氣中揮發性有機物之類別及來源』,國立中山大學環境工程研究所碩士論文,2005。
楊至哲,『石化工業區環境大氣中揮發性有機污染物垂直空間分布及季節變化趨勢分析』,國立中山大學環境工程研究所碩士論文,2011。
劉山豪,『高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析』,國立中山大學環境工程研究所碩士論文,2000。
劉巧蓮,『大社石化工業區臭味特徵成份分析研究』,國立成功大學環境工程學系碩士論文,2004。
甯蜀光,『石化工業區有害空氣污染物管理系統建置與減量策略研究』,行政院國科會專題研究計畫(子計畫四),2010。
蔡俊鴻,『光化學二次污染現象與機制:固定源排放揮發性有機物光化反應潛勢指標研究』,行政院國科會專題研究計畫(子計畫一),1998。
蔡信行,『石油產品及其應用』,中國石油股份有限公司,2000。
蔡協宏,『低層大氣中臭氧與碳氫化合物之關連性解析』,逢甲大學環境工程與科學所碩士論文,2004。
何俊杰,『石化工業區揮發性有機物總量管制』,工業污染防制第71期,1999。
謝祝欽,吳泄澤,游榮華,『建立本土化樹種BVOCS排放係數與推估公式之研究』,第八屆氣膠科技國際研討會,2000。
許逸群,『臭氧高濃度區揮發性有機物特徵與排放源關連性研究』,國立成功大學博士論文,2000。
許逸群,『中部雲嘉南空品區臭氧污染成因調查研究分析:固定源及面源VOC排放推估及光化潛勢研究』,行政院國科會專題研究計畫(子計畫三),2007。
廖琦峰,『工業區有害空氣污染物排放與影響評估方法之研究』,國立成功大學環境工程研究所碩士論文,2005。
羅卓卿,『油品儲運站鄰近空氣中揮發性有機污染物分佈特性研究』,國立中山大學環境工程研究所碩士論文,2001。
羅俊光,『自動化氣相層析質譜系統分析ppbv級之臭氧前趨物與甲基第三丁基醚及交通污染源指標之應用』,行政院國科會專題研究計畫,2003。
王根樹,『汽油及液化石油氣(LPG)引擎排放污染物比較分析之研究』,液化石油氣加氣站協會期末報告,2004。
雍介民,『石化工業區臭味物質對附近環境之影響』,台灣大學環境工程研究所碩士論文,2000。
黃思蒨,『運用受體模式與軌跡模式探討揮發性有機物之貢獻與傳輸』,逢甲大學環境工程與科學學系碩士論文,2007。
盧彥勳,『大氣中微粒污染與重金屬成分之模擬與分析』,東海大學環境科學與工程學系碩士論文,2009。
蔣本基,江右君,『台北地區空氣中揮發性有機物特性與污染源分析』,國立台灣大學碩士論文,1993。
錢立行,『高雄元宵節高空煙火施放對環境空氣品質之影響』,國立中山大學環境工程研究所碩士論文,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code