Responsive image
博碩士論文 etd-0821112-111504 詳細資訊
Title page for etd-0821112-111504
論文名稱
Title
微型質子交換膜燃料電池電化學阻抗頻譜法及循環伏安法量測與性能分析
Performance Test and Electrochemical Impedance Spectroscopy /Cyclic Voltammetry for a μPEM Fuel Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-03
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
循環伏安法、白金使用率、質子交換膜燃料電池、性能、電化學阻抗頻譜法
performance, PEMFC, EIS, Pt utilization, CV
統計
Statistics
本論文已被瀏覽 5718 次,被下載 2676
The thesis/dissertation has been browsed 5718 times, has been downloaded 2676 times.
中文摘要
本實驗以黃光微影製程 (LIGA-like) 及微電鑄技術製作出蛇形及孔洞狀二種不同流道板,並以不同排列的方式組合出三種(分別為蛇(陽極)-蛇(陰極)、蛇-孔、孔-孔)反應面積各為1 cm2的微型質子交換膜燃料電池,本實驗除了以性能量測(VI曲線)的方式探討在不同流量、操作溫度、相對濕度下,此三種燃料電池組合的差異性外,更採用了電化學阻抗頻譜法 (electrochemical impedance spectroscopy, EIS)及以循環伏安法 (cyclic votammetry, CV)來分別對燃料電池量測所相對應的電化學阻抗頻譜圖及MEA膜的白金使用率(Pt utilization)。在實驗結果當中發現,雖然陰陽極皆為蛇形狀流道板的燃料電池在陰極需要額外的提供進氣壓力,但卻可有效的減少陰極水的堆積而使得擴散阻抗變小及提高整體燃料電池的性能。
Abstract
In this study, two different flow field plates, a serpentine field plate and a perforated filed plate, were produced by LIGA-like formation and micro electroforming technology. The two type field plates were also used to make up three different types of micro proton exchange membrane fuel cells (µPEMFCs), serpentine (anode)-serpentine (cathode), serpentine-perforated, and perforated-perforated, each of whose active area is 1 cm2. In addition to the performance tests under different flow rate, operation temperature, and relative humidity conditions, electrochemical impedance spectroscopy (EIS) and cyclic votammetry (CV) methods were also adapted to measure correspondent EIS and Pt utilization of MEA. Even the fuel cell with serpentine field plates in anode and cathode needs more pressure input, the extra pressure is effective to avoid the water accumulation and to raise the total performance.
目次 Table of Contents
目錄............................................................................................................i
表目錄.......................................................................................................iv
圖目錄 ......................................................................................................v
符號說明..................................................................................................vii
中文摘要.................................................................................................. ix
英文摘要....................................................................................................x
第一章 序論............................................................................................1
1-1 前言...............................................................................................1
1-2 燃料電池簡介...............................................................................3
1-3 文獻回顧.......................................................................................6
1-4 研究目的.....................................................................................13
第二章 質子交換膜燃料電池元件設計與製作..................................16
2-1 質子交換膜燃料電池組成元件.................................................16
2-2 燃料電池組設計要點.................................................................21
2-3 質子交換膜燃料電池元件製作.................................................23
第三章 燃料電池性能分析..................................................................31
3-1 前言.............................................................................................31
3-2 極化曲線.....................................................................................32
3-2-1 活化極化 (activation polarizaton) ...................................33
3-2-2 歐姆極化 (ohmic polarization) ........................................34
3-2-3 濃度極化 (concentration polarization) ............................34
3-3 電化學理論分析.........................................................................35
3-3-1 電化學阻抗頻譜法 (EIS) 之量測原理...........................36
3-3-2 循環伏安法(CV)之量測原理...........................................40
第四章 實驗設備與材料......................................................................49
4-1 實驗設備與系統組件.................................................................49
4-2 實驗材料.....................................................................................52
第五章 誤差分析..................................................................................56
第六章 結果與討論..............................................................................61
6-1不同操作參數對燃料電池性能及電化學阻抗之影響..............62
6-2不同操作參數對MEA膜白金觸媒使用率之影響....................64
6-3不同流道對燃料電池性能、電化學阻抗及MEA膜白金觸媒使用率之影響..................................................................................65
第七章 結論與建議..............................................................................88
7-1 結論.............................................................................................88
7-2 建議與未來展望.........................................................................89
參考文獻..................................................................................................91
附錄A.......................................................................................................98

表 目 錄
頁次
表 2-1 流道幾何參數及實驗操作參數...............................................29
表 5-1 誤差分析...................................................................................60
表 6-1 相對濕度加熱換算表...............................................................70
表 6-2 等效電路各阻抗參數表...........................................................71

圖 目 錄
頁次
圖1-1 不同流道板之質子交換膜燃料電池組裝示意圖(a) 蛇形-蛇形(b) 蛇形-孔洞(c) 孔洞-孔洞...............................................15
圖2-1 流道板製程步驟......................................................................30
圖3-1 典型燃料電池極化曲線..........................................................43
圖3-2 電化學量測之輸入電壓、輸出電流與時間關係圖..............44
圖3-3 等效電路奈氏圖......................................................................45
圖3-4 (a) 簡單電阻及(b) 電化學反應電阻之等效電路及相對應的奈氏圖......................................................................................46
圖3-5 燃料電池整體等效電路及奈氏圖模型..................................47
圖3-6 質子交換膜燃料電池(PEMFC) 循環伏安法CV量測示意圖..............................................................................................48
圖 4-1 儀器設備..................................................................................55
圖 6-1 蛇形狀燃料電池流道板..........................................................72
圖 6-2 燃料電池測示環路圖..............................................................73
圖 6-3 (a) 蛇型氫氣管路(b) 加熱片(c) 加熱型濕度控制器示意圖 (d) 加熱型濕度控制器............................................................74
圖 6-4 蛇形狀燃料電池在25°C下不同流量最大功率分佈.............75
圖 6-5 蛇形狀燃料電池在不同相對濕度下之性能比較.................76
圖 6-6 蛇形狀流道板燃料電池在不同相對濕度之EIS量測分佈圖.............................................................................................77
圖 6-7 蛇形狀燃料電池在不同操作溫度之性能比較.....................78
圖 6-8 蛇形狀流道板燃料電池在不同溫度之EIS量測分佈圖.....79
圖 6-9 蛇形狀燃料電池在不同溫度及相對濕度下之CV量測結果.............................................................................................80
圖 6-10 Pt utilization與不同操作濕度及溫度之關係圖....................81
圖 6-11 不同形狀流道板之性能比較..................................................82
圖 6-12 在V=0.7下不同形狀流道板之EIS比較..............................83
圖 6-13 在V=0.3下不同形狀流道板之EIS比較..............................84
圖 6-14 在V=0.1下不同形狀流道板之EIS比較..............................85
圖 6-15 不同形狀流道板之CV量測結果...........................................86
圖 6-16 不同形狀流道板之MEA膜有效反應面積區........................87

參考文獻 References
參 考 文 獻
1. D. B. Zhou and H. V. Poorten, “Electrochemical Characterization of Oxygen Reduction on Teflon-Bound Gas Diffusion Electrodes,” Electrochimica Acta, Vol. 40, 1995, pp. 1819-1826.
2. F. N. Büchi and G. G. Scherer, “In-situ Resistance Measurements of Nafion® 117 Membranes in Polymer Electrolyte Fuel Cells,” Journal of Electroanalytical Chemistry, Vol. 404, 1996, pp. 37-43.
3. E. Antolini, L. Giorgi, A. Pozio, and E. Passalacqua, “Influence of Nafion Loading in the Catalyst Layer of Gas-Diffusion Electrodes for PEFC,” Journal of Power Sources, Vol. 77, 1998, pp. 136-142.
4. D. Chu and R. Jiang, “Performance of electrolyte membrane fuel cell (PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack,” Journal of Power Sources, Vol. 83, 1999, pp. 128-133.
5. T. J. P. Freire and E. R. Gonzalez, “Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells,” Journal of Electroanalytical Chemistry, Vol. 503, 2001, pp. 57-68.
6. R. O’Hayre, S. J. Lee, S. W. Cha, and F. B. Prinz, “A Sharp Peak in the Performance of Sputtered Platinum Fuel Cells at Ultra-low Platinum Loading,” Journal of Power Sources, Vol. 109, 2002, pp. 483-493.
7. H. Chang, J. R. Kim, J. H. Cho, H. K. Kim, and K. H. Choi, “Materials and Process for Small Fuel Cells,” Solid State Ionics, Vol. 148, 2002, pp. 601-606.
8. G. Bender, M. S. Wilson, and T. A. Zawodzinski, “Further Refinements in the Segmented Cell Approach to Diagnosing Performance in Polymer Electrolyte Fuel Cell,” Journal of Power Sources, Vol. 123, 2003, pp. 163-171.
9. M. Ciureanu, S. D. Mikhailenko, and S. Kaliaguine, “PEM Fuel Cells as Membrane Reactors: Kinetic Analysis by Impedance Spectroscopy,” Catalysis Today, Vol. 82, 2003, pp. 195-206.
10. R. O’Hayre and F. B. Prinz, “The Air/Platinum/Nafion Triple-Phase Boundary : Characteristics, Scaling and Implications for Fuel Cells,” Journal of the Electrochemical Society, Vol. 151, 2004, pp. A756-A762.
11. S. J. Lee, C. H. Huang, J. J. Lai, and Y. P. Chen, “Corrosion-resistant Component for PEM Fuel Cells,” Journal of Power Sources, Vol.131, 2004, pp.162-168.
12. S. -S. Hsieh, C. F. Huang, J. K. Kuo, H. H. Tasi, and S. H. Yang, “SU-8 Flow Field Plates for a Micro PEMFC,” Journal of Solid State Electrochemistry, Vol. 9, 2005, pp. 121-131.
13. B. H. Liu, Z. P. Li, K. Arai, and S. Suda, “Performance Improvement of a Micro Borohydride Fuel Cell Operating at Ambient Conditions,” Electrochimica Acta, Vol. 50, 2005, pp. 3719-3725.
14. Q. Yan, H. Toghiani, and J. Wu, “Investigation of Water Transport through Membrane in a PEM Fuel Cell by Water Balance Experiments,” Journal of Power Sources, Vol. 158, 2006, pp. 316-325.
15. Q. Yan, H. Toghiani, and H. Causey, “Steady State and Dynamic Performance of Proton Exchange Membrane Fuel Cells (PEMFCs) Under Various Operating Conditions and Load Changes,” Electrochemistry Communications, Vol. 161, 2006, pp. 492-502.
16. S. -S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, and H. H. Tsai, “Study of Operational Parameters on the Performance of Micro PEMFCs with Different Flow Fields,” Energy Conversion and Management, Vol. 47, 2006, pp. 1868-187.
17. S. -S. Hsieh, C. L. Feng, and C. F. Huang, “Development and Performance Analysis of a H2 / Air Micro PEM Fuel Cell Stack,” Journal of Power Sources, Vol. 163, 2006, pp. 440-449.
18. S. -S. Hsieh and K. M. Chu, “Channel and Rib Geometric Scale Effects of Flowfield Plates on the Performance and Transient Thermal Behavior of a Micro PEM Fuel Cell,” Journal of Power Sources, Vol. 173, 2007, pp. 222-232.
19. P. V. Leal, F. R. Palomo, F. Barragan, C. Garcia, and J. J. Brey, “Design of Control Systems for Portable PEM Fuel Cell,” Journal of Power Sources, Vol. 169, 2007, pp. 194-197.
20. H. Woo and J. B. Benziger, “PEM Fuel Cell Current Regulation by Fuel Feed Control,” Chemical Engineering Science, Vol. 62, 2007, pp. 957-968.
21. A. Kundu, J. H. Gil, C. R. Jung, H. R. Lee, S. H. Kim, B. Ku, and Y. S Oh, “Micro Fuel Cells-Current Development and Applications,” Journal of Power Sources, Vol. 170, 2007, pp. 67-78.
22. H. Xu, H. R. Kunz, and J. M. Fenton, “Analysis of Proton Exchange Membrane Fuel Cell Polarization Losses at Elevated Temperature 120 °C and Reduced Relative Humidity,” Electrochimica Acta, Vol. 52, 2007, pp. 3525-3533.
23. H. Nakajima, T. Konomi, and T. Kitahara, “Direct Water Balance Analysis on a Polymer Electrolyte Fuel Cell (PEFC): Effects of Hydrophobic Treatment and Micro-porous Layer addition to the Gas Diffusion Layer of a PEFC on its Performance during a Simulated Start-up Operation,” Journal of Power Sources, Vol. 171, 2007, pp. 457-463.
24. E. D. Wang, P. F. Shi, C. Y. Du, and X. R. Wang, “A Mini-type Hydrogen Generator from Aluminum for Proton Exchange Membrance Fuel Cells,” Journal of Power Sources, Vol. 181, 2008, pp. 144-148.
25. T. Yang and P. Shi, “A Preliminary Study of a Six-cell Stack with Dead-end Anode Open-slits Cathode,” International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 3795-2801.
26. A. C. Fernandes and E. A. Ticianelli, “A Performance and Degradation Study of Nafion 212 Membrane for Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 193, 2009, pp. 547-554.
27. X. Liu, R. Villacorta, A. Adame, and A. K. Kannan, “Comparison of Pt/MWCNTs Nanocatalysts Synthesis Proton Exchange Membrane Fuel Cells,” International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 10877-10883.
28. H. Li, H. Wang, W. Qian, S. Zhang, S. Wessel, T. T. H. Cheng, J. Shen, and S. Wu, “Chloride Contamination Effects on Proton Exchange Membrane Fuel Cell Performance and Durability,” Journal of Power Sources, Vol. 196, 2011, pp. 6249-6255.
29. S. Park, Y. Shao, H. Wan, P. C. Rieke , V. V. Viswanathan , and S. A. Towne ,L. V. Saraf, J. Liu, Y. Lin, Y. Wang, “Design of Graphene Sheets-Supported Pt Catalyst Layer in PEM Fuel Cells,” Electrochemistry Communications, Vol. 13, 2011, pp. 258-261.
30. N. Cheng, S. Mu, X. Chen, H. Lv, M. Pan, and P. P. Edwards, “Enhanced Life of Proton Exchange Membrane Fuel Cell Catalysts using Perfluorosulfonic Acid Stabilized Carbon Support,” Electrochimica Acta, Vol. 56, 2011, pp. 2154–2159.
31. J. Shan and L. Hongton, “Cold Pre-compression of Membrane Electrode Assembly for PEM Fuel Cells,” International Journal of Hydrogen Energy(Available online 23 March 2012)
32. A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiely & Sons, New York, 2001.
33. J. R. Macdonald and W. R. Kenan, Impedance Spectroscopy, Emphasizing Solid Materials and Systems, Wiley, New York, 1987.
34. J. D. Kim, Y. I. Park, K. Kobayashi, M. Nagai, and M. Kunimatsu, “Characterization of CO Tolerance of PEMFC by AC Impedance Spectroscopy,” Solid State Ionics, Vol. 140, 2001, pp. 313-325.
35. J. M. Song, S. Y. Cha, and W. M. Lee, “Optimal Composition of Polymer Electrolyte Fuel Cell Electrodes Determined by AC Impedance Method,” Journal of Power Sources, Vol. 94, 2001, pp. 78-84.
36. R. O’Hayre, S. W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, John Wiely & Sons, New York, 2006.
37. 胡啓章, 電化學原理與方法, 五南圖書出版公司, 台灣, 2002.
38. A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, “Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry,” Journal of Power Sources, Vol. 105, 2002, pp. 13-19.
39. G. Sasikumar, J. W. Ihm, and H. Ryu, “Dependence of Optimum Nafion Content in Catalyst Layer on Platinum Loading,” Journal of Power Sources, Vol. 132, 2004, pp. 11-17.
40. W. Jinfeng, Z. Y. Xiao, and W. Haijiang, “Diagnostic Tools in PEM Fuel Cell Research: Part I Electrochemical Techniques,” International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 1735-1746.
41. S. Sun, H. Yu, J. Hou, Z. Shao, B. Yi, P. Ming, and Z. Hou, “Catalytic Hydrogen/Oxygen Reaction Assisted the Proton Exchange Membrane Fuel Cell (PEMFC) Startup at Subzero Temperature,” Journal of Power Sources, Vol. 177, 2008, pp. 137-141.
42. S. S. T. Kline and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
43. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” J. Fluids Eng.-Trans. ASME, Vol. 104, 1982, pp. 250-260.
44. John R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997.
45. Z. Qi and A. Kaufman, “Activation of Low Temperature PEM Fuel Cells,” Journal of Power Sources, Vol. 111, 2002, pp. 181-184.
46. C. Y. Wen and G. W. Huang, “Application of a Thermally Conductive Pyrolytic Graphite Sheet to Thermal Management of A PEM Fuel Cell,” Journal of Power Sources, Vol. 178, 2008, pp. 132-140.
47. R. F. Mann, J. C. Amphlett, B. A. Peppley, and C. P. Thurgood, “Application of Butler-Volmer Equations in the Modeling of Activation Polarization for PEM Fuel Cells,” Journal of Power Sources, Vol. 161, 2006, pp. 775-781.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code