Responsive image
博碩士論文 etd-0821112-112938 詳細資訊
Title page for etd-0821112-112938
論文名稱
Title
可撓式熱管製作設計與性能分析
The Design, Fabrication and Performance Analysis of a Flexible Heat Pipe
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-03
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
可撓式熱管、高分子、矽膠、性能、熱壓成型
flexible heat pipe, polymer, silicone rubber, performance, hot embossing
統計
Statistics
本論文已被瀏覽 5690 次,被下載 3191
The thesis/dissertation has been browsed 5690 times, has been downloaded 3191 times.
中文摘要
本實驗提出一新型可撓式熱管製作方式並進一步探討其性能,熱管以模具熱壓成型(hot embossing)方式製作而成,主要材質是採用高分子材料矽膠(silicone rubber),此材質具有彎曲性佳、材質輕盈及耐高溫等特性,此外在蒸發端與冷凝端處採用紅銅片作為基材與矽膠接合以有效增加熱傳效果。本實驗熱管採用去離子水(DI water)為工作流體並以兩層250網目的銅網為毛細結構來增加毛細力,依真空度為0.0658 atm不同功率下進行性能測試,尋找出最佳填充率為40 %,在水平下測試最大熱通量可達11.75 W/cm2,除了水平測試外,本實驗更進一步測試熱管在不同彎曲角度(0 ~ -90°)下對熱傳性能的影響,由熱阻分析顯示可撓式熱管最佳彎曲角度為-15°,且在彎曲角度(-30 ~ -90°)間進行測試,其熱阻會隨彎曲角度加大而升高,實驗證實可撓式熱管在小角度彎曲下有助於工作流體回流於蒸發端,但彎曲角度過大則因熱管內部毛細結構無法依原本服貼於熱管壁面,則熱傳性能降低,故熱管之參數搭配得宜,可發揮極大熱傳性能。
Abstract
This experiment produces a new flexible heat pipe, and further tests and explores its characteristics and performance. The heat pipe is made of silicone rubber, a kind of polymer material, and was molded by hot embossing. Characteristics of this material include good bending resistance, lightness, and good resistance to high temperature. Furthermore, copper sheets connected with silicone were placed at the evaporator section and condenser section to enhance heat transfer effects. DI water in the pipe was used as the working medium, and two-layer 250 mesh copper nets were used as a wick to strengthen the heat pipe’s capillary effects. The researcher set the vacuum degree at 0.0658 atm to test the pipe’s performances at different powers. Key findings include an optimum filling ratio of 40%, and a largest heat flux of 11.75 W/cm2 during the proficiency test. In addition to the proficiency test . The influence of different angles of bends (0 ~ -90°) on the pipe’s heat transfer performance was also tested and based on heat thermal resistance obtained, found that the best bended angle of the flexible heat pipe was -15°, and thermal resistance will increase with the angle(-30 ~ -90°). The experiment proves a small angle bend that is helpful for the working medium to flow back to the evaporator section, but the heat transfer performance would shrink because the wick could not affix to the inner wall of the pipe if the angle is too large. This work shows the proper combination of pipe parameters will significantly improve heat transfer performance.
目次 Table of Contents
目錄................................................................................................................i
表目錄..........................................................................................................iii
圖目錄..........................................................................................................iv
符號說明......................................................................................................vi
中文摘要....................................................................................................viii
英文摘要......................................................................................................ix
第一章 序論...............................................................................................1
1-1 前言..............................................................................................1
1-2 熱管發展之背景..........................................................................3
1-3 文獻回顧......................................................................................5
1-4 研究目的....................................................................................12
第二章 熱管之原理與理論基礎.............................................................14
2-1 熱管有效長度............................................................................14
2-2 熱管彎曲角度之定義................................................................14
2-3 熱管作動原理............................................................................15
2-4 熱管性能極限............................................................................17
2-5 熱管性能評估............................................................................22
2-6 微熱管之定義............................................................................24
第三章 實驗相關設備與元件材料.........................................................38
3-1 實驗設備及步驟........................................................................38
3-2 實驗元件材料............................................................................43
第四章 實驗元件製作設計.....................................................................51
4-1 工作流體的選擇........................................................................51
4-2 熱管的設計與製程....................................................................53
第五章 誤差分析.....................................................................................66
第六章 結果與討論.................................................................................70
6-1 工作流體填充量對性能的影響................................................71
6-2 輸入功率對於性能的影響........................................................73
6-3 彎曲角度改變對性能的影響....................................................74
第七章 結論與建議.................................................................................92
7-1 結論............................................................................................92
7-2 建議............................................................................................94
參考文獻.....................................................................................................95
附錄A.................................................................................................101
參考文獻 References
1. 依日光, 熱管技術理論實務, 復漢出版社, 1986, pp. 1-4.
2. M. Grover, T. P. Cotter, and G. F. Erikson, “Structures of Very High Thermal Conductivity,” Journal Applied Physics., Vol. 35, 1964, pp. 1190-1191.
3. T. P. Cotter, Theory of Heat Pipe, Los Alamos Scientific Laboratory Report No.LA-3246-MS, 1965.
4. S. W. Chi, Heat Pipe Theory and Practice, Hemisphere Publishing Washington D. C, 1976.
5. P. D. Dunn and D. A. Reay, Heat Pipes, 3rd Edn., Press, Oxford, 1982.
6. T. P. Cotter, “Principles and Prospects of Micro Heat Pipes,” 5th International Heat Pipe Conference, 1984, pp. 328-335.
7. N. Gernert, D. Sarraf, and M. Steinberg, “Flexible Heat Pipe Cold Plates for Aircraft Thermal Control,” SAE Technical Paper Series, 1991, pp. 1- 9.
8. I. Sauciuc, M. Mochizuki, K. Mashiko, Y. Satio, and T. Nguyen, “The Design and Testing of the Super Fiber Heat Pipe for Electronics Cooling Applications,” Institute of Electrical and Electronics Engineers, 2000, pp. 27-32.
9. T. Kobayashi, T. Ogushi, N. Sumi, and M. Fujii, “Thermal Design of an Ultra Slim Notebook Computer,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, 2000, pp. 6-13.
10. K. Namba, J. Niekawa, Y. Kimura, and N. Hashimoto, “Heat-Pipes for Electronic Devices and Evaluation of Their Thermal performance,” IEEE Transactions on Components and Packaging Technologies, Vol. 23 , 2000, pp. 91-94.
11. S. H. Moon, H. G. Yun, G. Hwang, and T. G. Choy, “Experimental Study on the Performance of Miniature Heat Pipes with Woven-Wire Wick,” IEEE Transaction on Components and Packading Technologies, Vol. 24, 2001, pp. 591-595.
12. D. McDaniels and G. P. Peterson, “Investigation of Polymer Based Micro Heat Pipes for a Flexible Spacecraft Radiator,” American Society of Mechanical Engineers, Vol. 124, 2001, pp. 423-433.
13. E. Dallago and G. Venchi, “Thermal Characterization of Compact Electronic Systems: A Portable PC as a Study Case ,” IEEE Transactions on Power Electronics, Vol. 17, 2002, pp. 187-195.
14. S. H. Moon, G. Hwang, H. G. Yun, T. G. Choy, Y. II Kang, “Improving Thermal Performance of Miniature Heat Pipe for Notebook PC Cooling ,” Microelectronics Reliability, Vol. 42, 2002, pp. 135-140.
15. Y. X. Wang, and G. P. Peterson, “Capillary Evaporator in Microchanneled Polymer Films,” Journal of Thermophysics and Heat Transfer, Vol. 17, 2003, pp. 354-359.
16. Y. S. Muzychka, J. R. Culham, and M. M. Yovanovich, “Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels,” American Society of Mechanical Engineers, Vol. 125, 2003, pp. 178-185.
17. T. Kobayashi, T. Ogushi, S. Haga, E. Ozaki, and M. Fujii, “Heat Transfer Performance of a Flexible Looped Heat Pipe Using R134a as a Working Fluid: Proposal for a Method Topredict the Maximum HeatTransfer Rate of FLHP,” Heat Transfer - Asian Research, Vol. 32, pp. 306-318.
18. T. Ogushi, A. Yao, J. J. Xu, H. Masumoto, and M. Kawaji, “Heat Transport Characteristics of Flexible Looped Heat Pipe under Micro-Gravity Condition,” Heat Transfer – Asian Research, Vol. 32, 2003, pp. 381-390.
19. B. V. Borgmeyer, and H. B. Ma, “Heat Spreading Analysis of a Heat Sink Base Embedded with a Heat Pipe,” ASME Conference Proceedings, 2005, pp. 553-556.
20. M. Mochizuki, Y. Saito, F. Kiyooka, and T. Nguyen, “The Way We Were and Are Going on Cooling High Power Processors in the Industries,” The Seventh International Symposium in Transport Phenomena, 2006.
21. D. D. Odhekar and D. K Harris, “Experimental investigation of bendable heat pipes using sintered copper felt wick,” Frontier in Heat Pipes, 2006, pp. 570-577.
22. S. S. Hsieh, R. Y. Lee, J. C. Shyu, and S. W. Chen, “Analytical Solution of Thermal Resistance of Vapor Chamber Heat Sink with and without Pillar,” Energy Conversion and Management, Vol. 48, 2007, pp. 2708-2717.
23. S. S. Hsieh, R. Y. Lee, J. C. Shyu, and S. W. Chen, “Thermal Performance of Flat Vapor Chamber Heat Spreader,” Energy Conversion and Management, Vol. 49, 2008, pp. 1774-1784.
24. C. J. Oshman, B. Shi, R. G. Yang, Y. C. Lee, and V. M. Bright, “Fabrication and Testing of a Flat Polymer Micro Heat Pipe,” IEEE, 2009, pp. 1999-2002.
25. S. C. Wong, S. F. Huang, and K. C. Hsieh, “Performance Test on a Novel Vapor Chamber,” Applied Thermal Engineering, 2011, pp. 1757-1762.
26. S. Wang, J. Chen, Y. Hu, and W. Zhang, “Effect of Evaporation Section and Condensation Length on Thermal Performance of Flat Plate Heat Pipe,” Applied Thermal Engineering, 2011, pp. 1-7.
27. D. D. Odhekar and D. K Harris, “Bendable Heat Pipe Using Sintered Metal Felt Wick,” Frontier in Heat Pipes, Vol. 2, 2011, pp. 1-8.
28. C. Oshman, B. Shi, C. Li, R. Yang, Y. C. Lee, G. P. Peterson, and V. M. Bright, “The Development of Polymer-Based Flat Heat Pipe,” Journal of Microelectromechanical System, Vol. 20, 2011, pp. 410-417.
29. G. P. Peterson, and J. Wiley, “An Introduction to Heat Pipes,” IECEC, 1994, pp.44-74.
30. 王啟川, 熱交換器設計,五南圖書出版公司, 2001.
31. R. Ponnappan, “A Novel Micro Capillary Groove Wick Miniature Heat Pipe,” Vol. 2, 2000, pp. 818-826.
32. Y. Cao, and M. Gao, “Wick Network Heat Pipes for High Heat Flux Spreading Applications,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 2539-2547.
33. J. H. Liou, C. W. Chang, C. Chao, and S. C. Wong, “Visualization and Thermal Resistance Measurement for the sintered Mesh Wick,” International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 1498-1506.
34. B. R. Babin, G. P. Peterson, and D. Wu, “Steady-State Modeling andTesting of a Micro Heat Pipe,” ASME, Vol. 112, 1990, pp. 595-601.
35. S. Maalej, M.C. Zaghdoudi, “Experimental and Theoretical Analysis on Enhanced Flat Miniature Heat Pipes with Axial Capillary Grooves and Screen Meshes,” Thermal Issues in Emerging Technologies, 2007, pp. 21-32.
36. Y. Wang and G. P. Peterson, “Investigation of a Novel Flat Heat Pipe,” ASME, Vol.127, 2005, pp. 165-170.
37. C. Li, G. P. Peterson, and Y. Wang, “Evaporation /Boiling in Thin Capillary Wicks(I)-Wick Thickness Effects,” ASME, Vol. 128, 2006, pp. 1312-1319.
38. C. Li and G. P. Peterson, “Evaporation /Boiling in Thin Capillary Wicks(II)- Effects of Volumetric Porosity and Mesh Size,” ASME, Vol. 128, 2006, pp. 1320-1328.
39. H. Aoki, N. Shioya, M. Ikeda, and Y. Kimura, “Development of Ultra Thin Plate-Type Heat Pipe with Less Than 1 mm Tickness,” IEEE Semiconductor Thermal Measurement and Management Symposium, 2010, pp. 217-222.
40. L. L. Vasiliev, “Micro and Miniature Heat Pipe-Electronic Component Coolers,” Applied Thermal Engineering, Vol. 17, 2006, pp. 1359-4311.
41. K. Kadoguchi, T. Fukano, and Y. Emi, “Operating Limit of Closed Two-Phase Thermosyphone with a Binary Mixture,” The Tenth International Heat Transfer Conference, Vol. 7, 1994, pp. 449-454.
42. X. Yang, Y. Y. Yan, and D. Mullen, “Recent Developments of Lightweight, High Performance Heat Pipes,” Applied Thermal Engineering, Vol. 33-34, 2012, pp. 1-4.
43. S. S. T. Kline and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
44. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Trans. ASME, Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
45. John R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997.
46. S. Lips, F. Lefevre, J. Bonjour, “Combined Effects of Filling Ratio and the Vapour Space Thickness on the Performance of a Flat Plate Heat Pipe, ” International Journal of Heat and Mass Transfer, Vol.53, 2010, pp. 694-702.
47. H. T. Lim, S. H. Kim, H. D. Im, K. H. Oh, and S. H. Jeong, “Fabrication and Evaluation of a Copper Flat Micro Heat Pipe Working under Adverse - Gravity Orientation,” Journal of Micromechanics and Microengineering, Vol. 18, 2008, pp. 0960-1317.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code