Responsive image
博碩士論文 etd-0821112-160000 詳細資訊
Title page for etd-0821112-160000
論文名稱
Title
陣列式超音波微孔霧化片應用於高功率LED冷卻之性能分析
Thermal Characteristics of High Power LED Cooling by Ultrasonic Micro-nozzle Plate Arrays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-03
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
超音波微孔霧化片、μPIV、噴霧冷卻、高功率LED、壓電陶瓷材質
Ultrasonic micro-nozzle plate, High power LED, Spray cooling, μPIV, Piezoelectric ceramic material
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1275
The thesis/dissertation has been browsed 5732 times, has been downloaded 1275 times.
中文摘要
本實驗主要目的為針對高功率LED 的散熱需求,探討利用噴霧冷卻方式來進行散熱的性能分析。本實驗利用壓電陶瓷材質製成的超音波微孔霧化片來建立一噴霧冷卻系統,本系統使用霧化片陣列( 3 × 2 )來對24 顆( 6 × 4 )高功率LED 進行散熱實驗,選用3 種不同瓦數(1 W、3 W、5 W)的LED 來進行測試,總輸入功率分別為24、72 及120 W,工作流體為去離子水(DI water),探討不同孔徑(dj = 7、35 μm)的霧化片在不同噴霧距離(z = 10、20、30、40、50 mm)下的性能差異,本實驗利用熱電偶量測LED 封裝底部散熱座溫度,再利用LED 熱阻推算出LED 晶片溫度,並透過微質點影像測速系統(μPIV)觀測腔體內的噴霧流場,藉此分析流場變化對於散熱性能的影響。
Abstract
By focusing on the cooling requirement of high power LED, the study aims to explore the spray cooling method and analyze its cooling performance. The ultrasonic micro-nozzle plate made of piezoelectric ceramic material was used in this experiment in order to establish a spray cooling system. The nozzle plate array (3 × 2) was used to carry out a cooling test for 24 LEDs with high power (6 × 4). Three different watts (1 W, 3 W, 5 W) of LED were tested, the total input power was 24W, 72W and 120 W, respectively, and the working medium was DI water. The goal is to understand the variance in performance caused by nozzle plates of different nozzle diameters (dj = 7, 35 μm) in varied nozzle distances (z = 10, 20, 30, 40, 50 mm). The experiment used thermocouples to measure the slug temperature of LED. By applying thermal resistnace to the LED to calculate its chip temperature, and using micrometer resolution particle image velocimetry (μPIV) to observe the spray flowfield inside the LED chamber, this study analyzes the influence of flowfield change on cooling performance.
目次 Table of Contents
目錄.............................................................................................................i
表目錄....................................................................................................... iv
圖目錄.........................................................................................................v
符號說明.................................................................................................viii
中文摘要....................................................................................................x
英文摘要...................................................................................................xi
第一章 序論............................................................................................1
1-1 前言...........................................................................................1
1-2 LED溫度特性...........................................................................2
1-3 噴霧冷卻發展之背景...............................................................3
1-4 文獻回顧...................................................................................4
1-5 研究目的...................................................................................8
第二章 實驗系統與設備......................................................................13
2-1 微質點影像測速儀系統.........................................................13
2-2 超音波微孔霧化片.................................................................14
2-3 溫度量測系統..........................................................................15
2-4 其他實驗週邊設備..................................................................15
第三章 實驗方法及步驟.................................................................... ..24
3-1 微型噴霧系統設計與製作......................................................24
3-2 μPIV量測系統建立及原理....................................................26
3-3 LED熱阻量測步驟.................................................................27
3-4 實驗量測參數..........................................................................28
第四章 理論分析...................................................................................36
4-1 熱傳分析與計算......................................................................36
4-2 結點溫度量測原理..................................................................38
4-3 冷卻系統熱阻計算..................................................................41
第五章 誤差分析...................................................................................46
第六章 結果與討論...............................................................................50
6-1 腔體內μPIV流場分析............................................................50
6-2 LED之溫度量測分析..............................................................53
6-3 冷卻系統熱阻分析..................................................................56
6-4 綜合分析討論..........................................................................58
第七章 結論與建議...............................................................................85
7-1 結論..........................................................................................85
7-2 建議與改進..............................................................................86
參考文獻...................................................................................................87
附錄 A......................................................................................................94
參考文獻 References
1. Technical Datasheet DS25, “Power Light Source Luxeon Emitter,” www.Lumiled.com,06/05/2012.
2. E. Hong, N. Narendran, “A Method for Projecting Useful Life of LED Lighting Systems,” In 3rd International Conference on Solid Lighting, Vol. 5187, 2004, pp. 93-99.
3. OIDA, “Light Emitting Diodes (LEDs) for General Illumination,” An OIDA Technology Roadmap Update 2002.
4. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-State Lighting: Failure Analysis of White Leds,” Journal of Crystal Growth, Vol. 268, 2004, pp. 449-456.
5. Y. B. Acharya and P. D. Vyavahare, “Temperature Characteristics of the Device Constant (N) of a Light Emitting Diode,” Solid-State Electronics, vol. 43, 1999, pp. 645-647.
6. M. Akhter, P. Maaskant, D. Casey, J. Rohan, N. Cordero, and B. Corbett, “Packaging Technology for High Power Blue-Green Leds,” Proceeding of SPIE, Vol. 5825, 2005, p. 634.
7. S. Haque, D. Steigerwald, S. Rudaz, B. Steward, J. Bhat, D. Collins, F. Wall, C. Elpedes, and P. Elizondo, “Packaging Challenges of High-Power Leds for Solid State Lighting,” Society of Photo-Optical Instrumentation Engineers, Vol. 5288, 2003, pp. 881-886.
8. L. Lin and R. Ponnappan, “Heat Transfer Characteristics of Spray Cooling in a Closed Loop,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746.
9. S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, “Spray Cooling Characteristics of Water and R-134a. Part I: Nucleate Boiling,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
10. S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, “Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
11. A. G. Pautsch and T. A. Shedd, “Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part I: Heat Transfer Data Using Fc-72,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175.
12. T. A. Shedd and A. G. Pautsch, “Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part II: Visualization and Empirical Models,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184.
13. J. Kim, “Spray Cooling Heat Transfer: The State of the Art,” International Journal of Heat and Fluid Flow, Vol. 28, 2007, pp. 753-767.
14. S.-S. Hsieh and C.-H. Tien, “R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
15. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, “Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-Boiling Regime,” Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 933-942.
16. W.-L. Cheng, F.-Y. Han, Q.-N. Liu, and H.-L. Fan, “Spray Characteristics and Spray Cooling Heat Transfer in the Non-Boiling Regime,” Energy, Vol. 36, 2011, pp. 3399-3405.
17. Y. Tao, X. Huai, L. Wang, and Z. Guo, “Experimental Characterization of Heat Transfer in Non-Boiling Spray Cooling with Two Nozzles,” Applied Thermal Engineering, Vol. 31, 2011, pp. 1790-1797.
18. M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Generation Solid State Lighting Applications: Light Emitting Diodes,” In 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002, pp. 113-120.
19. N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance Characteristics of High-Power Light-Emitting Diodes,” In 3rd International Conference on Solid State Lighting, Vol. 5187, 2004, pp. 267-275.
20. T. Acikalin, S. V. Garimella, J. Petroski, and R. Arvind, “Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes,” In 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, 2004, pp. 663-671.
21. N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” IEEE /OSA Journal of Display Technology, , Vol. 1, 2005, pp. 167-171.
22. K. Zhang, G-W. Xiao, C. K. Y. Wong, H.-W. Gu, M. M. F. Yuen, P. C. H. Chan, and B. Xu, “Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip,” In 55th Electronic Components and Technology Conference, 2005, pp. 60-65.
23. J.-H. Cheng, C.-K. Liu, Y.-L. Chao, and R.-M. Tain, “Cooling Performance of Silicon-Based Thermoelectric Device on High Power LED,” In 24th International Conference on Thermoelectrics, 2005, pp. 53-56.
24. L. Yuan, S. Liu, C. Mingxiang, and L. Xiaobing, “Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler,” In 7th International Conference on Electronic Packaging Technology, 2006, pp. 1-5.
25. X. Luo and S. Liu, “A Microjet Array Cooling System for Thermal Management of High-Brightness Leds,” IEEE Transactions on Advanced Packaging, Vol. 30, 2007, pp. 475-484.
26. W. Dai, J. Wang, and Y. Li, “Transient Thermal Analysis of High-Power LED Package,” Semiconductor Optoelectronics, Vol. 3, 2008, pp. 324-328.
27. X.-y. Lu, T.-C. Hua, M.-j. Liu, and Y.-x. Cheng, “Thermal Analysis of Loop Heat Pipe Used for High-Power LED,” Thermochimica Acta, Vol. 493, 2009, pp. 25-29.
28. J.-C. Wang, R.-T. Wang, T.-L. Chang, and D.-S. Hwang, “Development of 30 Watt High-Power Leds Vapor Chamber-Based Plate,” International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 3990-4001.
29. J.-C. Wang, “Thermal Investigations on LED Vapor Chamber-Based Plates,” International Communications in Heat and Mass Transfer, Vol. 38, 2011, pp. 1206-1212.
30. Y. Deng and J. Liu, “A Liquid Metal Cooling System for the Thermal Management of High Power Leds,” International Communications in Heat and Mass Transfer, Vol. 37, 2010, pp. 788-791.
31. P. Anithambigai, K. Dinash, D. Mutharasu, S. Shanmugan, and C. K. Lim, “Thermal Analysis of Power LED Employing Dual Interface Method and Water Flow as a Cooling System,” Thermochimica Acta, Vol. 523, 2011, pp. 237-244.
32. J. Li, B. Ma, R. Wang, and L. Han, “Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-Power Leds,” Microelectronics Reliability, Vol. 51, 2011, pp. 2210-2215.
33. T. M. Roffi, I. Idris, K. Uchida, S. Nozaki, N. Sugiyama, H. Morisaki, and F. X. N. Soelami, “Improvement of High-Power-White-LED Lamp Performance by Liquid Injection,” In International Conference on Electrical Engineering and Informatics, 2011, pp. 1-6.
34. Y. J. Gou, Z. L. Liu, C. M. Wang, and X. H. Zhong, “Experimental Study of Effect Factors on Performance of Heat Dissipation of Hp Heat Exchanger for LED Cooling System,” Advanced Materials Research, Vol. 490, 2012, pp. 2530-2533.
35. H. H. Wu, K. H. Lin, and S. T. Lin, “Efficient Heat Dissipation Design of High-Power Multi-Chip Cob Package Led Modules,” Advanced Materials Research, Vol. 463, 2012, pp. 1332-1340.
36. Y. Luo, T. W. Wei, Z. W. Tang, and W. X. Kong, “The Design Research of Single-Chip High Power LED Radiator,” Applied Mechanics and Materials, Vol. 103, 2012, pp. 219-224.
37. C.-I Chao, W. K. Lin, H. P. Wang, B. R. Chen, "T-Junction Measurement Development on LED Lighting Device," Sustainable Energy, Vol. 2, 2012, pp. 1-7.
38. 發光二極體封裝技術, VisEra, http://www.viseratech.com/, 06/05/2012.
39. M. N. Topp, “Ultrasonic Atomization-a Photographic Study of the Mechanism of Disintegration,” Journal of Aerosol Science, Vol. 4, 1973, pp. 17-25.
40. Y. Al-Sueimani, A. Collins, and A. Yule, “How Orderly Is Ultrasonic Atomization,” In ILASS-Europe99, 1999.
41. L. Chun-Fu, Y. Jinn-Chemg, C. Chun-Jung, and F. Chien-Chung, “Low Power Micro Spray Cooling System,” In 5th International Microsystems Packaging Assembly and Circuits Technology Conference, 2010, pp. 1-4.
42. J. P. Gwinn and R. Webb, “Performance and Testing of Thermal Interface Materials,” Microelectronics Journal, Vol. 34, 2003, pp. 215-222.
43. R. S. Prasher and J. C. Matayabas, Jr., “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material,” Components and Packaging Technologies, IEEE Transactions on, Vol. 27, 2004, pp. 702-709.
44. C. J. M. Lasance, C. T. Murray, D. L. Saums, and M. Renez, “Challenges in Thermal Interface Material Testing,” In 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2006, pp. 42-49.
45. X. Luo, W. Chen, R. Sun, and S. Liu, “Experimental and Numerical Investigation of a Microjet-Based Cooling System for High Power LEDs,” Heat Transfer Engineering, Vol. 29, 2008, pp. 774-781.
46. 戴明吉, 劉君愷, 郭聖良, 譚瑞敏, 余致廣, 蕭志誠, “LED熱阻快速量測系統,” 熱管理產業通訊第11期, 2008.
47. LED熱阻量測標準草案. LED照明標準及品質量研發聯盟建議標準規範003號, 2008.
48. C.-I Chao, W. K. Lin, H. P. Wang, B. R. Chen, "T-Junction Measurement Development on LED Lighting Device," Sustainable Energy, Vol. 2, 2012, pp. 1-7.
49. S. S. T. Kline and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
50. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Jounal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
51. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code