Responsive image
博碩士論文 etd-0821112-160733 詳細資訊
Title page for etd-0821112-160733
論文名稱
Title
新型3D奈米氧化鋅能源擷取器製作
Design and fabrication of new 3D energy harvester with nano-ZnO rods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-21
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
奈米發電機、氧化鋅奈米柱、電噴法、溶膠-凝膠法、蕭特基、水溶液法
ZnO nanorods, Nanogenerators, Electrospray, Sol-gel, Aqueous solution method, Schottky contact
統計
Statistics
本論文已被瀏覽 5647 次,被下載 702
The thesis/dissertation has been browsed 5647 times, has been downloaded 702 times.
中文摘要
本研究提出新穎式3D奈米微發電機製作,選擇氧化鋅(ZnO)為壓電材料,使用電噴霧法(Electrospray)噴灑ZnO奈米粒子在金(Au)和鉻(Cr)的矽(Si)基板上,整個研究涵蓋ZnO壓電材料成長及物性分析與發電元件設計。首先使用溶膠-凝膠(Sol-gel)法混合乙醇胺(Ethanolamine)和乙二醇甲醚(2-Methoxyethanol)溶劑溶入醋酸鋅(Zinc Acetate)中形成前驅物溶膠。藉著改變前驅物溶膠參數製備均勻透明的最佳化Sol-gel溶液,提供電噴霧法製作Sol-gel奈米粒子。當針頭前端通以直流電壓時,Sol-gel溶液會因電場與表面張力形成泰勒錐(Taylor cone)噴灑Sol-gel奈米粒子於收集板上,再進行退火處理後形成ZnO奈米粒子。實驗中探討改變Sol-gel溶液參數、驅動電壓、電噴霧針頭與收集板的距離、X-Y軸平台移動次數和退火溫度找出較佳參數。製備ZnO奈米柱方面,利用較佳結晶特性的ZnO奈米粒子作為晶種層,搭配水溶液法固定溫度90℃,探討改變硝酸鋅(Zinc nitrate)和六亞甲基四胺(HMTA)莫爾濃度比與成長時間,製備高深寬比ZnO奈米柱。物性分析方面,ZnO奈米柱壓電特性和晶體表面結構利用X光射線繞射儀(X-ray diffraction, XRD)和場發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FESEM)更近一步探討。XRD證明ZnO奈米粒子隨著退火溫度增加和ZnO奈米柱高度越高,具有良好的C 軸優選取向。ZnO奈米柱表面結構部份由FESEM觀察出隨著成長時間與材料莫爾濃度比變化下,高度會隨著改變。但反應濃度若降低時,奈米柱高度會漸漸的被析出,其ZnO奈米柱直徑約為100 nm-400 nm和高度約為200 nm-1200 nm。並利用X光成份分析系統(EDAX)分析材料成份,証明本實驗的ZnO材料並無其他雜質。最後在電性量測部分,利用半導體材料的蕭特基(Schottky)接觸,濺鍍鉑(Pt)在ZnO奈米柱做為上電極封裝下電極的ZnO奈米柱結構,置放超音波震盪機使Pt壓迫ZnO奈米柱產生相對運動而變形,實驗發現頻率42 kHz下量出最大的輸出功率為0.004х10-8 W。
Abstract
This study presents a new way for new 3D energy harvesting energy with vertically aligned nanorods arrays. ZnO nanoparticles array on Au/Cr/Si substrate are directly patterned by electrospray. First, gel solutions with zinc acetate, monoethanolamine and 2-methoxyethanol as the precursor by sol-gel technology were formulated. Then, the solutions were stirred to become clear and homogeneous liquid. Second, the precursor solutions were prepared by electrospray, where a Taylor cone was formed to produce ZnO nanoparticles. Then the ZnO nanoparticles were annealed as seed layers for nanorods. By varying the property of the ZnO solution, needle with collector distance, applied voltage, annealing temperature and molar ratio were discussed. After annealing, the orientation of the ZnO nanorods depend on the crystalline orientation of ZnO nanoparticles. The ZnO nanorods were obtained at a temperature of 90 °C by aqueous solution method. The experimental parameters of lengths, diameters, and pH level of the reaction medium of the Zno nanorod were observed and controlled. The physical structures of ZnO were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The results show that the ZnO nanoparticles become more intensity with increasing in annealing temperature. The SEM analysis reveals that the ZnO nanorods have diameters about 100-400 nm and length about 200-1200 nm. Finally, Pt electrode atop as Schottky contacts were packed to fabricate nanogenerator with ZnO nanorods. Then the nanogenerator was driven by ultrasonic wave vibration. The wave drives the electrode up and down to vibrate the nanorods, and its voltage and current were also characterized. The measurement results show the maximum power is 0.004х10-8 W during the operation frequency of 42 kHz.
目次 Table of Contents
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.4 本文架構 7
第二章 理論基礎與原理 8
2.1 壓電材料 8
2.1.1 氧化鋅基本結構與應用 9
2.1.2 晶體結構 9
2.2 壓電效應原理 11
2.2.1正壓電效應(機械能轉電能) 11
2.2.2逆壓電效應(電能轉機械能) 12
2.3溶膠-凝膠法 16
2.3.1溶膠-凝膠法製作原理 17
2.3.2溶膠-凝膠法反應步驟 17
2.4電噴霧法製作背景 19
2.4 .1 電噴霧法製作原理 20
2.4 .2 電噴霧參數特性 22
2.5氧化鋅奈米結構之成長機制 24
2.5 .1 陽極氧化鋁法 24
2.5 .2 固-液-氣法 24
2.5 .3 溶液-液-固法 25
2.5 .4 非等向性成長法 25
2.6 水溶液法 26
2.6 .1 水溶液法介紹 26
2.6 .2 水溶液法合成一維氧化鋅成長機制 26
2.7 氧化鋅奈米發電機 28
2.7 .1 蕭特基接觸 28
2.7 .2 壓電式發電機原理 31
第三章 研究方法 32
3.1 實驗架構 32
3.1.1 實驗藥品 33
3.2 前驅物配製 34
3.3 電噴霧製作氧化鋅微奈米粒子方法 35
3.3 .1 電噴霧實驗儀器介紹 35
3.3 .2 濺鍍製程 36
3.3 .3 氧化鋅電噴霧製作流程 36
3.3 .4 電噴霧製程參數操作條件 37
3.4 水溶液法成長氧化鋅奈米柱 39
3.5實驗分析儀器 41
3.5.1 X光粉末繞射儀 41
3.5.2 場發射掃描式電子顯微鏡 42
第四章 實驗結果與討論 43
4.1 X光射線繞射儀分析 43
4.1.1 氧化鋅晶種層 43
4.1.2 氧化鋅奈米柱 48
4.2場發射掃描式電子顯微鏡分析 48
4.2.1有無濺鍍金屬成長氧化鋅差異性 49
4.2.2 不同成長時間與反應濃度 52
4.2.3 能量分散光譜分析 78
4.3 奈米發電機元件設計 80
4.3.1 奈米發電機封裝 80
4.3.2 奈米發電機電性量測 82
第五章 結論與未來展望 87
5.1 結論 87
5.2 未來展望 88
參考文獻 89
參考文獻 References
1. Z.W. Pan, Z.W. Dai, Z.L. Wang, “Nanobelts of semiconducting oxides,” Science, Vol. 291, Issue 5510, pp. 1947-1949, 2001.
2. Z.L. Wang, “ZnO nanowire and nanobelt platform for nanotechnology,” Material science, Vol. 64, Issue 3-4, pp. 33-77, 2009.
3. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Advance function material, Vol. 12, Issue 5, pp. 323-31, 2002.
4. Z.L. Wang, “Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology,” Acs nano, Vol. 2, Issue 10, pp. 1987-1992, 2008.
5. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, Vol. 292, Issue 8, pp. 1897-1899, 2001.
6. X.Y. Kong, Z.H. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano letters, Vol. 3, Issue 12, pp. 1625-1631, 2003.
7. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes,” Chemistry of materials, Vol. 13, Issue 12, pp. 4395-4398, 2001.
8. C. Ye, Y. Bando, G. Shen, D. Golberg, “Thickness-dependent photocatalytic performance of ZnO nanoplatelets,” The journal of physical chemistry B, Vol. 110, Issue 31, pp. 15146-15151, 2006.
9. C. Ye, Y. Bando, G. Shen, D. Golberg, “A novel method to measure the generated voltage of a ZnO nanogenerator,” Nanotechnology, Vol. 22, Issue 39, pp. 395204-395208, 2011.
10. Z.L. Wang, J. Song, “Piezoelectric nanogenerators based on ZnO nanowire arrays,” Science, Vol. 312, Issue 5771, pp. 242-246, 2006.
11. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano letters, Vol. 6, Issue 12, pp. 2768-2772, 2006.
12. Z.L. Wang, “Energy harvesting for self-powered nanosystems,” Nano research, Vol. 1, Issue 1, pp. 1-8, 2008.
13. J. Lin, P. Fei, J. Song, X. Wang, C, Lao, R. Tummaia, Z.L. Wang, “Carrier density and schottky barrier on the performance of DC nanogenerator,” Nano letter, Vol. 8, Issue 1, pp. 328-332, 2008.
14. Z.L. Wang, X.D. Wang, J. Song, J. Liu, Y.F. Gao, “Piezoelectric nanogenerators for self-powered nanodevices,” IEEE computer society, Vol. 7, Issue 1, pp. 49-55, 2008.
15. Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, “High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display,” Nano letter, Vol. 10, Issue 12 , pp. 5025-5031, 2010.
16. G. Zhu, R. Yang, S. Wang, Z.L. Wang, “Flexible high-output nanogenerator based on lateral ZnO nanowire array,” Nano letter, Vol. 10, Issue 8, pp. 3151-3155, 2010.
17. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, “Self-powered nanowire devices,” Nature nanotechnology, Vol. 5, Issue 5, pp. 366-373, 2010.
18. S. Xu, Z.L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano research, Vol. 4, Issue 11, pp. 1013-1098, 2011.
19. S. Zhang, Y. Shen, H. Fang, S. Xu, J. Song, Z.L. Wang, “Growth and replication of ordered ZnO nanowire arrays on general flexible substrates,” Journal of materials chemistry, Vol. 20, Issue 47, pp.10606-10610, 2010.
20. H. Wu, D. Lin, R. Zhang, W. Pan, “ZnO nanofiber field-effect transistor assembled by electrospinning,” Journal of the american ceramic society, Vol. 91, Issue 2, pp. 658-659, 2008.
21. C. Chang, Y.K. Fuh, L.W. Lin, “A direct-write piezoelectric PVDF nanogenerator,” IEEE solid-state sensors and microsystems conference, pp. 1485-1488, 2009.
22. Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit, M.C. Mcalpine, “Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons,” Nano letter, Vol. 11, Issue 3, pp. 1331-1336, 2011.
23. Z. Yang, H. Goto, M. Matsumoto, R. Maeda, “Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration,” Electrophoresis, Vol. 21, Issue 1, pp. 116-119, 2000.
24. D. Shen, J.H. Park, J. Ajitsaria, S.Y. Choe, H.C. Wikle, D.J. Kim, “The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,” Journal of micromechanics and microenergineering, Vol. 18, Issue 5, pp. 055017-055023, 2008.
25. S.J. Pearton, D.P. Norton, K.Ip, Y.W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in materials science, Vol. 50, Issue 3, pp. 293-340, 2005.
26. Z.L. Wang, “Ten years venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications,” Progress in materials science, Vol. 54, Issue 22, pp. 4021-4034, 2009.
27. Z.L. Wang, “Nanogenerators for self-powered devices and systems,” Mendeley, 2011.
28. 王瑞琪,新穎氧化鋅奈米材料的成長與光電性質,國立成功大學材料科學及工程學系博士論文,2006年6月
29. Z.L. Wang, “Toward self-powered sensor networks, “Nanotoday, Vol. 5, Issue 6, pp. 512-514, 2010.
30. P. Sagar, P.K. Shishodia, R.M. Mehra, “Influence of pH value on the quality of sol–gel derived ZnO films,” Applied surface science, Vol. 253, Issue 12, pp. 5419-5424, 2007.
31. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, “An introduction to electrospinning and nanofibers,” World scientific, Vol. 1, pp.1-396, 2005.
32. W.E. Teo, S. Ramakrishna, “A reviewon electrospinning design and nanofibre assemblies,” Nanotechnology, Vol. 176, Issue 10, pp. 89-106, 2006.
33. Y. Natsume, H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating,” Thin solid films, Vol. 372, Issue 1-2, pp. 30-36, 2000.
34. O.V. Salata, “Tools of nanotechnology: electrospray.” Analytical technologies, Vol. 1, Issue 1, pp. 25-33, 2005.
35. A. Jaworek, “Electrospray droplet sources for thin film deposition,” Chemistry and materials science, Vol. 42, Issue 1, pp. 266-297, 2007.
36. C.M. Ghimbeu, J. Schoonman, M. Lumbreras, M. Siadat, “Electrostatic spray deposited zinc oxide films for gas sensor applications,” Applied surface science, Vol. 253, Issue 18, pp. 7483-7489, 2007.
37. J. Ju, Y. Yamagata, T. Higuchi, “Thin-film fabrication method for organic light-emitting diodes using electrospray deposition,” Advance materials, Vol. 21, Issue 43, pp. 4343-4347, 2009.
38. A. Jaworek, A. Krupa, A.T. Sobczyk, M. Lackowski, T. Czech, Seeram Ramakrishna, S. Sundarrajan, D. Pliszka, “Electrospray nanocoating of microfibers,” Solid state phenomena, Vol. 140, pp.127-132, 2008.
39. G. Calvo, J. Davila, “Current and droplet size in the electrospraying of liquids scaling laws,” Aerosol science, Vol. 28, Issue 2, pp. 249-275, 1997.
40. S. Khan, H.D. Yang, A. Khan, A. Rahman, H.C. Kyung, D.S. Kim, “Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors,” Current applied physics, Vol. 11, Issue 1, pp. S271-S279, 2011.
41. G. kung, R.D. Braun, M.W. Dewhirst, “Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size,” Cancer research, Vol. 60, Issue 15, pp. 4440-4445, 2000.
42. M. Cloupeau, B. Prunet-Foch, “Electrostatic spraying of liquids: main functioning modes,” Journal of electrostatics, Vol. 25, Issue 2, pp. 165-184, 1990.
43. L.B. Lqeb, A.F. Kip, G.G. Hudson, “Pulses in negative point-to-plane corona,” Physical review, Vol. 60, Issue 1, pp. 714-722, 1941.
44. P.H. Smith, “The electrohydrodynamic atomization of liquids,” IEEE transactions on industry applications, Vol. 22, Issue 3, pp. 527-535, 1986.
45. B. Vonnegut, R.L. Neubaruer, “Production of monodysperse liquid particles by electrical atomization,” Science, Vol. 7, Issue 6, pp. 616-622, 1952.
46. T. Kyotani, L.F. Tsai, A. Tomita, “Preparation of ultrafine carbon tubes in nanochannels of an anodicaluminum oxide film,” Chemistry of materials, Vol. 8, Issue 8, pp. 2109-2113, 1996.
47. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, “Controlled growth of ZnO nanowires and their optical properties,” Advanced materials, Vol. 12, Issue 5, pp. 323-331, 2002.
48. J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, “Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition,” Advanced materials, Vol. 16, Issue 18, pp. 1661-1664, 2004.
49. B.J. Jin, S. Im, S.Y. Lee, “Violet and UV luminescenceemitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin solid films, Vol. 366, Issue 1-2, pp. 107-110, 2000.
50. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, “Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” The journal of physical chemistry, Vol. 108, Issue 13, pp. 3955-3958, 2004.
51. Q. Li, V. Kumar, Y. Li, Haitao. Zhang, T.J. Marks, P.H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions.” Chemistry of materials, Vol. 17, Issue 5, pp. 1001-1006, 2005.
52. Z.L. Wang, “Nanogenerators for self-powered devices and systems,” Georgia Institute of Technology, pp.1-139, 2011.
53. D.A. Neamen, “Semiconductor physics and devices,” MCCGraw-Hill-3th, New York, pp. 714, 2003.
54. Z.L. Wang, J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, Vol. 312, Issue 5771, pp. 242-246, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code