Responsive image
博碩士論文 etd-0821112-162450 詳細資訊
Title page for etd-0821112-162450
論文名稱
Title
微型直接甲醇燃料電池之製作與甲醇改質對其性能之影響
Fabrication of mDMFC and Effect of Methanol Modification on its Performance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
175
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-28
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
微型直接甲醇燃料電池、擴散層、界面活性劑、氣泡移除、表面張力
surfactant, diffusion layer, bubble removal, surface tension, μDMFC
統計
Statistics
本論文已被瀏覽 5722 次,被下載 387
The thesis/dissertation has been browsed 5722 times, has been downloaded 387 times.
中文摘要
直接甲醇燃料電池(DMFC)具備能於低溫下工作、能量密度高、啟動速度快、燃料易取得、易攜帶、安全與穩定與低污染等優點在未來相當有希望能取代鋰電池成為新一代的行動能源裝置。本研究以MEMS技術,以製作微型直接甲醇燃料電池(μDMFC) ,並簡化元件與成本,以因應未來將其應用於行動電子產品之微小化需求。本研究主要以矽晶片作為燃料電池之基底,並整合「TMAH濕蝕刻技術」、「光輔助電化學蝕刻技術」、「KOH濕蝕刻技術」以及「奈米碳管成長技術」,製作結合微型流道之丘狀擴散層(HDL)結構以及穿孔矽(THS)結構之燃料電池電極板,並將其應用於微型直接甲醇燃料電池(μDMFC)的製作。
本研究的另一個重點在於改善微型燃料電池之氣泡覆蓋問題。因為當甲醇反應產生之二氧化碳氣泡無法順利移除時,氣泡會逐漸覆蓋觸媒,進而影響反應,導致電池性能下降。本研究以甲醇改質的方式改善此種現象,以ㄧ般用於幫助氣泡移除,改善電鑄表面平整度之界面活性劑,試驗用於甲醇燃料中,評估對溶液表面張力與氧化能力之影響,並最後將其實際加入燃料電池中比較其效果。
實驗結果顯示,陽極與陰極分別使用丘狀擴散層電極和穿孔矽電極,能得到最佳的電池性能表現,其最大功率密度為0.186 mW/cm2、與單純碳紙電極相比有11.6倍之差異,而與陰陽極皆為丘狀擴散層電極相比有約2.5倍差異。界面活性劑的評估試驗得知,界面活性劑 MA適於作為甲醇之濕潤劑,並能從添加濃度控制對甲醇氧化能力與濕潤性之影響。藉由添加之MA可使氣泡尺寸縮減至原本1/2至1/3大小並減少約20 %之氣泡覆蓋面積。加入MA於燃料電池中,能幫助氣泡移除避免氣泡覆蓋問題,雖會對甲醇反應造成負面影響,但可使電壓於放電過程中趨於穩定不因氣泡問題而衰減,並延長電池之放電時間。
Abstract
Direct methanol fuel cell (DMFC) were characterized with low operation temperature, high energy density, rapid activation, easy to obtain, easy to carry, safety, stability and low pollution. Therefore, DMFCs were thought as the next generation of power suppliers to replace lithium battery in the future. In order to meet the miniaturization demand of portable electronic devices, this research tried to fabricate a μDMFC, simplify component, and lower cost by using MEMS technique. This research used TMAH etching, PEACE, and KOH etching, CNT growth technique to fabricate the hill-like diffusion layer (HDL) electrode which combined the channel structure and through-hole silicon (THS) electrode.
Another emphasis of this research was to improve the bubble cover problem for μDMFCs. The bubble cover problem resulted from the CO2 bubble generated in methanol oxidation reaction difficultly removed and resulted in adverse effect for reaction. This research tried to use the surfactants which used in electroforming to improve the bubble cover problem by improvement surface tension of fuel.
Experiments show that using the HDL electrode in anode and the THS electrode in cathode would get the maximum power density (0.186 mW/cm2). The powder density of the design μDMFC is 10 and 2.5 times larger than the one with pure carbon paper electrodes and the HDL electrodes. Surfactant MA was suitable as a wetting of methanol. Bubble size could reduce 1/2 to 1/3 and bubble cover area could reduce 20% by adding MA. Add MA in the fuel cell could help the bubbles remove to avoid the bubble cover problem. Though MA addition would have the adverse effect for methanol reaction, could get the stabile voltage and extend the discharge time.
目次 Table of Contents
中文摘要 i
英文摘要 ii
總目錄 iii
圖次 vi
表次 xv
第一章 緒論 1
1.1 前言 1
1.2 燃料電池 3
1.2.1 燃料電池之基本工作原理 3
1.2.2 燃料電池的種類和優勢 4
1.3質子交換膜燃料電池 8
1.3.1 直接甲醇燃料電池 8
1.3.2 微型直接甲醇燃料電池面臨之挑戰 11
第二章 文獻回顧 16
2.1 燃料電池中的電極反應動力學 16
2.1.1 極化曲線 16
2.1.2 循環伏安法 19
2.2 直接甲醇燃料電池的電催化反應 21
2.2.1 陽極之二氧化碳氣泡問題 22
2.2.2 陽極二氧化碳對性能的影響評估 31
2.3界面活性劑 37
2.3.1界面活性劑對氣泡移除之應用 39

2.4微機電系統技術應用於燃料電池製作 44
2.5 結合電化學蝕刻於燃料電池擴散層之製作 49
2.5.1電化學蝕刻簡介 49
2.5.2光輔助電化學蝕刻 51
2.5.3 多孔矽於燃料電池之應用 54
2.6 結合奈米碳管於燃料電池觸媒载體之製作 58
2.6.1 奈米碳管簡介 58
2.6.2 奈米碳管成長機制 61
2.6.3 奈米碳管於燃料電池之應用 63
2.7研究動機 68
第三章 實驗設計與規劃 69
3.1 實驗規劃 69
3.2界面活性劑的評估 72
3.2.1 親水性量測 72
3.2.2 半電池量測與氣泡行為觀察 73
3.3 電池元件之製作 76
3.3.1圖案定義製程 76
3.3.2 深蝕刻製程 84
3.3.3 奈米碳管之成長 93
3.3.4 直接甲醇燃料電池製備流程 95
3.4 實驗設備 99
第四章 結果與討論 106
4.1 界面活性劑之評估 106
4.1.1 親疏水性的評估 106
4.1.2甲醇氧化能力的評估 108
4.1.3氣泡移除效果的觀測 110
4.2 電池元件之製作 114
4.2.1 陽極流道深蝕刻製程 114
4.2.2 陽極擴散層蝕刻製程 119
4.2.3 陰極穿孔矽蝕刻製程 128
4.2.4 奈米碳管成長 132
4.2.5 直接甲醇燃料電池組裝 135
4.3 性能測試 137
4.3.1 半電池之陰陽極性能測試與討論 139
4.3.2 直接甲醇燃料電池性能測試與討論 141
第五章 結論與未來展望 148
5.1 結論 148
5-2 未來展望 150
參考文獻 151
參考文獻 References
1.  楊志忠, 林頌恩, 韋文誠, "燃料電池的發展現況", 科學發展, 367 (2003).
2. X. Huang, Z. Zhang, and J. Jiang, "Fuel cell technology for distributed generation: an overview" , Proceeding of the IEEE ISIE, (2006) .
3. R. O’Hayre, S. W. Chaet, W. Colella, and F. B. Prinz, "Fuel cell fundamentals" John Wily & Sons Inc., (2008).
4. 衣寶廉, 黃朝榮, "燃料電池-原理與應用", 五南出版社, (2007).
5. 蔡英文, 許盈盈, "Development of international micro fuel cell systems", 工業材料雜誌, 283 (2010) 135-144.
6. Http://everything2.com/title/energy+density
7. S. K. Kamarudin, W. R. W. Daud, S. L. Ho, and U. A. Hasran, "Overview on the challenges and developments of micro-direct", Journal of Power Sources, 163 (2007) 743-754.
8. M. Ohashi, Z. Guo, N. Wang, and K. Tseng, "Small DMFC for portable applications", Fujikura Technical Review, 39 (2010).
9. 高志勇, 陳耿陽, 吳富其, 黃秋萍, "直接甲醇燃料電池製程技術發展現況", 工業材料雜誌, 193 (2003) 111-119.
10. A. Kirubakaran , S. Jain, and R.K. Nema, "A review on fuel cell technologies and power electronic interface", Renewable and Sustainable Energy Reviews, 13 (2009) 2430-2440.
11. 肖鋼, "燃料電池技術", 全華圖書股份有限公司, (2010).
12. 黃鎮江, "燃料電池", 滄海書局, (2008).
13. S. K. Wang, F. Tseng, T. K. Yeh, and C. C. Chieng, "Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC", Journal of Power Sources, 167 (2007) 413-419.
14. A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell", Catalysis Today, 38 (1997) 445-457.
15. Y. Ishikawa , M. S. Liao, and C. R. Cabrera, "Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M=Ru, Sn): a theoretical study", Surface Science, 463 (2000) 66-80.
16. Z. J. Hou, H. M. Yu, B. L. Yi, and M. Han, "The development of carbon monoxide tolerant catalysts for proton-exchange membrane fuel cell", Journal of Electrochemistry, 6 (4) (2000) 379-387.
17. T. Frelink, W. Visscher, and J.A.R. van Veen, "On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt", Surface Science, 335 (1995) 353-360.
18. E. Antolini, J.R.C. Salgado, and E. R. Gonzalez, "The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review", Applied Catalysis B: Environmental, 63 (2006) 137-149.
19. T. Page, R. Johnson, J. Hormes, S. Noding, and B. Rambabu, "A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS", Journal of Electroanalytical Chemistry, 485 (2000) 34-41.
20. S.K. Kamarudin, F. Achmada, and W.R.W. Dauda, "Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices", International Journal of Hydrogen Energy, 34 (2009) 6902-6916.
21. 林峻霆, 陳順林, 曾繁根, "CNTs於直接甲醇燃料電池中CO2氣泡移除之應用", 科儀新知, 173 (2009) 77-82.
22. P. Argyropoulos, K. Scott, and W.M. Taama, "Carbon dioxide evolution patterns in direct methanol fuel cells", Electrochimica Acta, 44 (1999) 3575-3584.
23. K. Scott, W. M. Taama, and P. Argyropoulos, "Material aspects of the liquid feed direct methanol fuel cell", Journal of Applied Electrochemistry, 28 (1998) 1389-1397.
24. K. Scott, W. M. Taama, P. Argyropoulos, and P. Yiannopoulos, "Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow bed", Journal of Applied Electrochemistry, 31 (2001) 823-832.
25. H. Yang, and T.S. Zhao, "Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells", Electrochimica Acta, 50 (2005) 3243-3252.
26. G.Q. Lu, and C.Y. Wang, "Electrochemical and flow characterization of a direct methanol fuel cell", Journal of Power Sources, 134 (2004) 33-40.
27. S. C. Yao, X. Tang, C. C. Hsieh, Y. Alyousef, M. Vladimer, G. K. Fedder, and C. H. Amon, "Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development", Energy, 31 (2006) 636-649.
28. J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, "The influence of anode gas diffusion layer on the performance of low-temperature DMFC", Journal of Power Sources, 168 (2007) 453-458.
29. H. Yang, T.S. Zhao, and Q. Ye, "In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields", Journal of Power Sources, 139 (2005) 79-90.
30. Q. Liao, X. Zhu, X. Zheng, and Y. Ding, "Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC", Journal of Power Sources, 171 (2007) 644-651.
31. T. Bewer, T. Beckmann, H. Dohle, J. Mergel, and D. Stolten, "Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution", Journal of Power Sources, 125 (2004) 1-9.
32. 莊睿欣, "觀察甲醇燃料電池陽極氣泡產生與脫離現象-以雙氧水代替甲醇模擬氣泡的生成", 國立清華大學工程與系統科學系碩士論文, (2005).
33. S. K. Wang, F. Tseng, T. K. Yeh, and C. C. Chieng, "Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC", Journal of Power Sources, 167 (2007) 413-419.

34. S. L. Chen, C. T. Lin, M. C. Tsai, Y. S. Wu, C. H. Wang, T. K. Yeh, C. H. Tsai, and F. G. Tseng, "Improved CO2 removal capability by utilizing CNTs as secondary catalyst support for DMFC", Proceedings of PowerMEMS, (2008).
35. S. L. Chen, C. T. Lina, C. C. Chieng, and F. G. Tseng, "Highly efficient CO2 bubble removal on carbon nanotube supported nanocatalysts for direct methanol fuel cell", Journal of Power Sources, 195 (2010) 1640-1646.
36. Http://210.60.224.4/ct/content/1973/00120048/0016.htm
37. Http://www.ch.vnu.edu.tw/pws/luiseliu/界面活性劑.doc
38. Http://www.shs.edu.tw/works/essay/2010/03/2010032921510671.pdf
39. Http://highscope.ch.ntu.edu.tw/wordpress/?p=27484
40. T. Baum, and D. J. Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si<100> in KOH for micromachining applications", Journal of Micromechanics and Microengineering, 7 (1997) 338-342.
41. J. N. Lin, S. K. Banerji, and H. Yasuda, "Role of interfacial tension in the formation and the detachment of air bubbles. 1. A single hole on a horizontal plane immersed in water", Langmuir, 10 (3) (1994) 936-942.
42. Z. J. Wei, Y. Y. Wang, C. C. Wan, and C. H. Huang, "Study of wetters in nickel electroforming of 3D microstructures", Materials Chemistry and Physics, 63 (2000) 235-239.
43. C. R. Yang, P. Y. Chen, C. H. Yang, Y. C. Chiou, and R. T. Lee, "Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions", Sensors and Actuators A, 119 (2005) 271-281.
44. R. Hahna, S. Wagner, A. Schmitz, and H. Reichl, "Development of a planar micro fuel cell with thin film and micro patterning technologies", Journal of Power Sources, 131 (2004) 73-78.

45. K. G. Stanley, Q. M. Jonathan, Wu, T. Vanderhoek, and S. Nikwnb, "Fabrication of a micromachined direct methanol fuel cell", Electrical and Computer Engineering, 1 (2002) 450-454.
46. G.Q. Lu a, C.Y. Wang, T.J. Yen, and X. Zhang, "Development and characterization of a silicon-based micro direct methanol fuel cell", Electrochimica Acta, 49 (2004) 821-828.
47. S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and T. Osaka, "MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code