Responsive image
博碩士論文 etd-0821112-165900 詳細資訊
Title page for etd-0821112-165900
論文名稱
Title
超音波微孔霧化片應用於高功率LED冷卻之性能分析
Thermal Characteristics of High Power LED Cooling by an Ultrasonic Micro-nozzle Plate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-03
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
μPIV、高功率LED、超音波微孔霧化片、噴霧冷卻、陶瓷壓電材質
Ultrasonic micro-nozzle plate, Spray cooling, High power LED, μPIV, Piezoelectric ceramic material
統計
Statistics
本論文已被瀏覽 5736 次,被下載 2874
The thesis/dissertation has been browsed 5736 times, has been downloaded 2874 times.
中文摘要
本實驗在探討以壓電陶瓷材質製成的超音波微孔霧化片(ultrasonic micro-nozzle plate)為核心建立起一套運用於高功率LED散熱上的噴霧冷卻系統;本系統利用單顆霧化片來對4顆(2 × 2) 高功率LED進行散熱,總輸入功率為4 W、12 W及20 W,工作流體為去離子水(DI water),探討在不同的霧化片孔徑(dj = 7、35 μm)下,對於不同噴霧距離(z = 10、20、30、40、50 mm)的性能差異;透過微質點影像測速儀(μPIV)觀測腔體內的噴霧流場,並以熱電偶(thermocouple)量取LED散熱座的溫度,進而利用LED熱阻推算出LED結點溫度(junction temperature, Tj),藉此分析噴霧於腔體內流場的變化對於LED散熱的影響,並探討噴霧冷卻方式來進行LED散熱的可行性。
Abstract
This study aims to explore the use of an ultrasonic micro-nozzle plate, made of piezoelectric ceramic material, as a core material to establish a set of spray cooling system for high power LED. The system uses a single nozzle plate to implement a cooling test for 4 high power LEDs (2 × 2). The total input power was 4 W, 12 W and 20 W, and working medium was DI water. In order to understand the performance variance introduced by utilizing nozzle plates with differing nozzle diameters (dj = 7, 35 μm) across various nozzle exit to test distance (z = 10, 20, 30, 40, 50 mm). By using micrometer resolution particle image velocimetry (μPIV) to observe the spray flowfield inside the chamber, and using thermocouples to measure the temperature of LED slug and thermal resistance was used to calculate the LED junction temperature , Tj, for analyzing the influence of flowfield change spread in chamber on its cooling performance. The possibility of an LED spray cooling system is also explored.
目次 Table of Contents
目錄............................................................................................................i
表目錄......................................................................................................iv
圖目錄.......................................................................................................v
符號說明.................................................................................................viii
中文摘要....................................................................................................x
英文摘要...................................................................................................xi
第一章 序論............................................................................................1
1-1 前言...........................................................................................1
1-2 LED溫度特性..........................................................................1
1-3 噴霧冷卻發展之背景...............................................................2
1-4 文獻回顧...................................................................................4
1-5 研究目的...................................................................................8
第二章 實驗系統與設備......................................................................14
2-1 微質點影像測速儀系統..........................................................14
2-2 超音波微孔霧化片..................................................................15
2-3 溫度量測系統.........................................................................16
2-4 其他實驗週邊設備.................................................................16
第三章 實驗方法及步驟......................................................................25
3-1 噴霧冷卻系統設計與製作.....................................................25
3-2 μPIV量測系統建立及原理..................................................27
3-3 LED內部熱阻量測步驟........................................................28
3-4 實驗量測參數.........................................................................29
第四章 理論分析..................................................................................37
4-1 熱傳分析與計算.....................................................................37
4-2 結點溫度量測原理.................................................................39
4-3 冷卻系統熱阻計算.................................................................42
第五章 誤差分析..................................................................................47
第六章 結果與結論..............................................................................51
6-1 腔體內μPIV流場分析..........................................................51
6-2 LED之溫度量測分析............................................................53
6-3 冷卻系統熱阻分析.................................................................56
6-4 綜合分析討論.........................................................................58
第七章 結論與建議..............................................................................86
7-1 結論.........................................................................................86
7-2 建議與改進.............................................................................87
參考文獻..................................................................................................89
附錄 A.....................................................................................................96
參考文獻 References
1. OIDA, “Light Emitting Diodes (LEDs) for General Illumination,” An OIDA Technology Roadmap Update 2002.
2. C. I. Chao, W. K. Lin, H. P. Wang, B. R. Chen, “T-Junction Measurement Development on LED Lighting Device,” Sustainable Energy, Vol. 2, 2012, pp. 1-7.
3. F. Wall, P. S. Martin, G. Harbers,“High Power LED Package Requirements,” In 3th International Conference on Solid State Lighting, Vol. 5187, 2004, pp. 85-92.
4. Technical Datasheet DS51, “Power Light Source Luxeon K2,” www.lumiled.com, 06/05/2012.
5. Technical Datasheet DS25, “Power Light Source Luxeon Emitter,” www.lumiled.com, 06/05/2012.
6. E. Hong, N. Narendran, “A Method for Projecting Useful Life of LED Lighting Systems,” In 3th International Conference on Solid Lighting, Vol. 5187, 2004, pp. 93-99.
7. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, L. Deng, “Solid-state Lighting: Failure Analysis of White LEDs,” Journal of Crystal Growth, Vol. 268, 2004, pp. 449-456.
8. L. Lin and R. Ponnappan, “Heat Transfer Characteristics of Spray Cooling in a Closed Loop,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746.
9. S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, “Spray Cooling Characteristics of Water and R-134a Part I: Nucleate Boiling,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
10. S.-S. Hsieh, T.-C. Fan, and H.-H. Tsai, “Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
11. A. G. Pautsch and T. A. Shedd, “Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part I: Heat Transfer Data Using FC-72,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175.
12. T. A. Shedd and A. G. Pautsch, “Spray Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part II: Visualization and Empirical Models,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184.
13. J. Kim, “Spray Cooling Heat Transfer: The State of the Art,” International Journal of Heat and Fluid Flow, Vol. 28, 2007, pp. 753-767.
14. S.-S. Hsieh and C.-H. Tien, “R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
15. Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, “Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-Boiling Regime,” Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 933-942.
16. W.-L. Cheng, F.-Y. Han, Q.-N. Liu, and H.-L. Fan, “Spray Characteristics and Spray Cooling Heat Transfer in the Non-Boiling Regime,” Energy, Vol. 36, 2011, pp. 3399-3405.
17. Y. Tao, X. Huai, L. Wang, and Z. Guo, “Experimental Characterization of Heat Transfer in Non-Boiling Spray Cooling with Two Nozzles,” Applied Thermal Engineering, Vol. 31, 2011, pp. 1790-1797.
18. 發光二極體封裝技術, VisEra, http://www.viseratech.com/, 06/05/2012.
19. 黃振東, “LED封裝及散熱基板材料之現況與發展,” 工業材料雜誌, 231期, 2006, pp. 70-81.
20. 陳智禮, 楊鈞杰, “高功率LED的散熱處理,” 工業材料雜誌, 231期, 2006, pp. 139-145.
21. 張志祥, 邱國創, 林澤勝, “LED封裝模組與產品應用近況發展介紹,” 工業材料雜誌, 229期, 2006, pp. 69-84.
22. M. Arik, J. Petroski, and S. Weaver, “Thermal Challenges in the Future Generation Solid State Lighting Applications: Light Emitting Diodes,” In 8th Intersociety Conference on Thermal Phenomena, 2002, pp. 113-120.
23. N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance Characteristics of High-Power Light-Emitting Diodes,” In 3th International Conference on Solid State Lighting, Vol. 5187, 2004, pp. 267-275.
24. T. Acikalin, S. V. Garimella, J. Petroski, and R. Arvind, “Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes,” In 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, 2004, pp. 663-671.
25. K. Zhang, G-W. Xiao, C. K. Y. Wong, H.-W. Gu, M. M. F. Yuen, P. C. H. Chan, and B. Xu, “Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip,” In 55th Electronic Components and Technology Conference, 2005, pp. 60-65.
26. J.-H. Cheng, C.-K. Liu, Y.-L. Chao, and R.-M. Tain, “Cooling Performance of Silicon-Based Thermoelectric Device on High Power LED,” In 24th International Conference on Thermoelectrics, 2005, pp. 53-56.
27. N. Narendran and Y. Gu, “Life of LED-Based White Light Sources,” IEEE/OSA Journal of Display Technology, Vol. 1, 2005, pp. 167-171.
28. L. Yuan, S. Liu, C. Mingxiang, and L. Xiaobing, “Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler,” In 7th International Conference on Electronic Packaging Technology, 2006, pp. 1-5.
29. X. Luo and S. Liu, “A Microjet Array Cooling System for Thermal Management of High-Brightness LEDs,” IEEE Transactions on Advanced Packaging, Vol. 30, 2007, pp. 475-484.
30. W. Dai, J. Wang, and Y. Li, “Transient Thermal Analysis of High-Power LED Package,” Semiconductor Optoelectronics, Vol. 3, 2008, pp. 324-328.
31. X.-Y. Lu, T.-C. Hua, M.-J. Liu, and Y.-X. Cheng, “Thermal Analysis of Loop Heat Pipe Used for High-Power LED,” Thermochimica Acta, Vol. 493, 2009, pp. 25-29.
32. Y. Deng and J. Liu, “A Liquid Metal Cooling System for the Thermal Management of High Power LEDs,” International Communications in Heat and Mass Transfer, Vol. 37, 2010, pp. 788-791.
33. J.-C. Wang, R.-T. Wang, T.-L. Chang, and D.-S. Hwang, “Development of 30 Watt High-Power LEDs Vapor Chamber-Based Plate,” International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 3990-4001.
34. J.-C. Wang, “Thermal Investigations on LED Vapor Chamber-Based Plates,” International Communications in Heat and Mass Transfer, Vol. 38, 2011, pp. 1206-1212.
35. J. Li, B. Ma, R. Wang, and L. Han, “Study on a Cooling System Based on Thermoelectric Cooler for Thermal Management of High-Power LEDs,” Microelectronics Reliability, Vol. 51, 2011, pp. 2210-2215.
36. P. Anithambigai, K. Dinash, D. Mutharasu, S. Shanmugan, and C. K. Lim, “Thermal Analysis of Power LED Employing Dual Interface Method and Water Flow as a Cooling System,” Thermochimica Acta, Vol. 523, 2011. pp. 237-244.
37. T. M. Roffi, I. Idris, K. Uchida, S. Nozaki, N. Sugiyama, H. Morisaki, and F. X. N. Soelami, “Improvement of High-Power-White-LED Lamp Performance by Liquid Injection,” In International Conference on Electrical Engineering and Informatics, 2011, pp. 1-6.
38. Y. J. Gou, Z. L. Liu, C. M. Wang, and X. H. Zhong, “Experimental Study of Effect Factors on Performance of Heat Dissipation of HP Heat Exchanger for LED Cooling System,” Advanced Materials Research, Vol. 490, 2012, pp. 2530-2533.
39. Y. Luo, T. W. Wei, Z. W. Tang, and W. X. Kong, “The Design Research of Single-Chip High Power LED Radiator,” Applied Mechanics and Materials, Vol. 103, 2012, pp. 219-224.
40. H. H. Wu, K. H. Lin, and S. T. Lin, “Efficient Heat Dissipation Design of High-Power Multi-Chip Cob Package LED Modules,” Advanced Materials Research, Vol. 463, 2012, pp. 1332-1340.
41. M. N. Topp, “Ultrasonic Atomization-a Photographic Study of the Mechanism of Disintegration,” Journal of Aerosol Science, Vol. 4, 1973, pp. 17-25.
42. Y. Al-Sueimani, A. Collins, and A. Yule, “How Orderly Is Ultrasonic Atomization,” In ILASS-Europe99, 1999.
43. L. Chun-Fu, Y. Jinn-Chemg, C. Chun-Jung, and F. Chien-Chung, “Low Power Micro Spray Cooling System,” In 5th International Microsystems Packaging Assembly and Circuits Technology Conference, 2010, 2010, pp. 1-4.
44. J. P. Gwinn and R. Webb, “Performance and Testing of Thermal Interface Materials,” Microelectronics Journal, Vol. 34, 2003, pp. 215-222.
45. R. S. Prasher and J. C. Matayabas, Jr., “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material,” In IEEE Transactions on Components and Packaging Technologies, Vol. 27, 2004, pp. 702-709.
46. C. J. M. Lasance, C. T. Murray, D. L. Saums, and M. Renez, “Challenges in Thermal Interface Material Testing,” In 22nd Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2006, pp. 42-49.
47. X. Luo, W. Chen, R. Sun, and S. Liu, “Experimental and Numerical Investigation of a Microjet-Based Cooling System for High Power LEDs,” Heat Transfer Engineering, Vol. 29, 2008, pp. 774-781.
48. LED熱阻量測標準草案. LED照明標準及品質量研發聯盟建議標準規範003號, 2008.
49. 戴明吉, 劉君愷, 郭聖良, 譚瑞敏, 余致廣, 蕭志誠, “LED熱阻快速量測系統,” 熱管理產業通訊第11期, 2008.
50. C.-I Chao, W. K. Lin, H. P. Wang, B. R. Chen, “T-Junction Measurement Development on LED Lighting Device,” Sustainable Energy, Vol. 2, 2012, pp. 1-7.
51. S. S. T. Kline and F. A. Mcclintock, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
52. R. J. Moffat, “Contributions to the Theory of Single-Sample Uncertainty Analysis,” Journal of Fluids Engineering, Vol. 104, 1982, pp. 250-260.
53. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, California, 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code