Responsive image
博碩士論文 etd-0821112-172619 詳細資訊
Title page for etd-0821112-172619
論文名稱
Title
鋁合金/APC-2奈米複材積層板之高溫機械與疲勞性能之探討
Mechanical and Fatigue Behavior of Al/APC-2 Nanocomposite Laminates at Elevated Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-13
繳交日期
Date of Submission
2012-08-21
關鍵字
Keywords
疲勞、疲勞壽命、奈米複合材料、積層板、高溫、機械性能
Mechanical Properties, Life, Fatigue, Elevated temperature, Nanocomposite, Laminate
統計
Statistics
本論文已被瀏覽 5709 次,被下載 587
The thesis/dissertation has been browsed 5709 times, has been downloaded 587 times.
中文摘要
本文主旨在於研製鋁合金/碳纖維/聚醚醚酮三明治結構創新奈米複合材料積層板,及深入探討其奈米複材積層板在室溫及高溫環境下之機械性能、鑽孔機械性能、疲勞曲線及疲勞極限,並觀察其破壞機制將結果分析、討論並提出結論。
首先,為了克服未經表面處理之鋁合金在複合材料製程上常見之脫層問題,本文在材料前處理上採用二種常見之鋁合金表面處理法,分別為鉻酸化學蝕刻法及鉻酸陽極處理法,二種方法經由一系列之實驗與結果數據驗證,發現鉻酸陽極法擁有更好的抗脫層表現,且在機械性能實驗結果中也優於鉻酸化學蝕刻法。
製程方面,碳纖維/聚醚醚酮奈米複合材料積層板則採用二種疊序,分別為十字疊與類似均向疊,再與經由表面處理後之2024-T3鋁合金薄板熱壓成型,製成鋁合金/碳纖維/聚醚醚酮三明治結構創新奈米複材積層板,其奈米複材積層板經由ASTM D3039規範切割成試片,並採MTS-810萬能材料試驗機獲得其機械與疲勞性能。
在機械性能上,經由實驗獲得不同疊層在室溫及高溫下之應力–應變曲線,將其結果分析並得出預測模型,其預測應力–應變曲線與實驗結果一致,特別在轉折點之預測也相當準確。在鑽孔試片上,本文將改良型PSC預測模型延伸成高溫改良型預測模型,並用此延伸模型預測室溫與高溫下之鑽孔殘留強度,其預測結果再與實驗結果比對下相當準確。
疲勞性能方面,經由實驗獲得不同疊層在室溫及高溫下之應力–疲勞周期曲線與疲勞極限,分析並驗證實驗結果,其預測疲勞曲線與實驗結果吻合。
Abstract
The innovative Al/APC-2 hybrid nanocomposite fiber metal laminates (FMLs) were successfully fabricated. To overcome the usual problem of delamination, the Al alloy 2024-T3 thin sheets were treated by chromic acid anodic (CAA) method to achieve perfectly bonding with matrix PEEK eventually. It was found much better than the previously surface treatment method of CrO3-based chemical etching. A systematic study of hybrid specimens subjected to both static tensile and fatigue tests was conducted at elevated temperatures to obtain their mechanical properties, fatigue lives and failure mechanisms.
From the tensile tests, the mechanical properties of Al/APC-2 hybrid cross-ply and quasi-isotropic nanocomposite FLMs at elevated temperatures were received, such as ultimate tensile strength and longitudinal stiffness. Also, the predicted stress-strain curves was proposed and in good agreement with experimental data. The average values of received notched strength were affected significantly by stress concentration and high temperature. The modified point stress criterion (PSC) was used with the varied characteristic length dependent on nature of material and specimen geometry. The predicted notched strengths by the modified PSC model were not only precisely validated, but extended to the application at elevated temperatures.
The received fatigue data were plotted in S-N curves at variously elevated temperatures. The predictions of fatigue life curves were also presented and verified. The predicted S-N curves were compared with experimental data and found quite accurate.
目次 Table of Contents
摘 要 IV
ABSTRACT V
LIST OF FIGURES IX
LIST OF TABLES XI
I. INTRODUCTION 1
1.1 Background 1
1.1.1 Fiber Metal Laminates 2
1.1.2 APC-2 Nanocomposite 5
1.1.3 Surface Treatment 5
1.1.4 Notch and Residual Strength 6
1.1.5 Fatigue 7
1.2 Research Motive and Achievement 8
II. EXPERIMENTS 11
2.1 Materials 11
2.1.1 APC-2 11
2.1.2 2024-T3 Aluminum 12
2.1.3 SiO2 nanoparticle 13
2.2 Pretreatment 13
2.2.1 Pretreatment of Aluminum sheets 13
2.2.2 Pretreatment of APC-2 nanocomposite laminates 16
2.3 Fabrication of Specimens 16
2.4 Testing 17
III. MECHANICAL PROPERTIES BY CHEMICAL ETCHING METHOD AND CHROMIC ACID ANODIZING METHOD 29
3.1 Results 29
3.2 Analysis 29
IV. NOTCHED STRENGTH 46
4.1 Notched Strength in APC-2 Laminates at Elevated Temperatures 46
4.2 Formulation 46
4.2.1 Brief Review of Whitney-Nuismer PSC Model and Modified PSC Model 46
4.2.2 Extended Modified PCS Model 49
4.3 Modeling 51
4.3.1 PSC Model 51
4.3.2 Extended Modified PSC Model 51
4.4 Notched Strength in Al/APC-2 Nanocomposite Laminates 53
V. FATIGUE 72
5.1 Results 72
5.2 Formulation 72
5.2.1 Brief Review of Semi-log Relationship 72
5.2.2 Temperature Effect on Fatigue Life Prediction 74
5.3 Modeling 74
5.3.1 The First Segment (1 cycle to 103 cycles) 75
5.3.2 The Second Segment (103 cycles to 106 cycles) 76
VI. DISCUSSION 84
6.1 Mechanical Properties by Chemical Etching Method and Chromic Acid Anodizing Method 84
6.2 Notched Strength in APC-2 Laminates and Al/APC-2 Nanocomposite Laminates 86
6.2.1 APC-2 Laminates 86
6.2.2 Al /APC-2 Nanocomposite Laminates 87
6.3 Fatigue 88
VII. CONCLUSION 90
BIBLIOGRAPHY 92
APPENDIX 98
VITA 100
參考文獻 References
[1] Curtis HD., Fundamentals of aircraft structural analysis, McGraw-Hill Companies, 1997.
[2] Vlot A, Vogelesang LB, de Vries TJ. Towards application of fibre metal laminates in large aircraft. Aircraft Engineering & Aerospace Technology, 1999;71(6):558–570.
[3] Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the developmentand properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research, 2006;9(3):247–56.
[4] Beumler T, Pellenkoft F, Tillich A, Wohlers W, Smart C. Airbus costumer benefit from fiber metal laminates. Airbus Deutschland GmbH, 2006, Issue 1: 1–18.
[5] Norris G., Thomas G., Wagner M. and Forbes Smith C. Boeing 787 Dreamliner – Flying Redefined. Aerospace Technical Publications International, 2005.
[6] Campbell K, Airbus to start manufacturing parts for new A350 XWB in late ’09. Engineering News online, 11 May, 2009.
[7] Sinmazcelik T, Avcu E, Bora MO, Coban O. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design, 2011;32(7):3671–3685.
[8] Vlot A, Gunnink JW. Fibre metal laminates : an introduction. Dordrecht , Boston: Kluwer Academic Publishers, 2001.
[9] Gunnink JW, Vlot A, de Vries TJ, van der Hoeven W. Glare technology development 1997-2000. Applied Composite Materials, 2002;9(4):201–219.
[10] Asundi A, Choi AYN. Fiber metal laminates: An advanced material for future aircraft. Journal of Materials Processing Technology, 1997;63(1-3):384–394.
[11] Alderliesten RC. Damage tolerance of bonded aircraft structures. International Journal of Fatigue, 2009;31(6):1024–1030.
[12] Johnson WS, Hammond MW. Crack growth behavior of internal titanium plies of a fiber metal laminate. Composites: Part A.: Applied Science and Manufacturing, 2008; 39 (11):1705–1715
[13] Lin CT, Kao PW, Yang FS. Fatigue Behavior of Carbon Fiber-Reinforced Aluminum Laminates. Composites, 1991;22(2):135–141.
[14] Vlot A., Impact properties of fiber metal laminates, Composite Engineering, 1993; 3: 911–927
[15] Sadighia M, Alderliesten RC, Benedictus R. Impact Resistance of Fiber-Metal Laminates: a Review. International Journal of Impact Engineering, 2012; 49:77–79
[16] Hoo Fatt MS, Lin C, Revilock Jr DM., Hopkins DA, Ballistic impact of Glare fiber – metal laminates. Composite Structures, 2003; 61:73–88
[17] Compston P, Cantwell WJ, Jones C, Jones N, Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber metal laminate. Journal of Materials Science Letters, 2001; 20(7): 597 – 599.
[18] Burianek DA, Spearing SM. Delamination growth from face sheet seams in cross-ply aluminum/graphite hybrid laminates. Composites Science and Technology, 2001;61(2):261–269.
[19] Burianek DA, Spearing SM. Fatigue damage in aluminum-graphite hybrid laminates. Composites Science and Technology, 2002;62(5):607–617.
[20] Alderliesten R, Rans C, Benedictus R. The applicability of magnesium based Fibre Metal Laminates in aerospace structures. Composites Science and Technology, 2008;68(14):2983–2993.
[21] McCombe GP, Etches JA, Mellor PH, Bond IP. Development of a ferromagnetic fibre metal laminate. Composites Part A: Applied Science and Manufacturing. 2011;42(10):1380–1389.
[22] Reyes Villanueva Gn. Processing and characterisation of the mechanical properties of novel fibre-metal laminates. Liverpool: Ph.D. Thesis, 2002.
[23] Abdullah MR, Cantwell WJ. The impact resistance of polypropylene-based fibre-metal laminates. Composites Science and Technology, 2006;66(11-12):1682–1693.
[24] Wu CL, Zhang MQ, Rong MZ, Friedrich K. Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Composites Science and Technology, 2005;65(3–4):635–645.
[25] Jen MHR, Tseng YC, Wu CH. Manufacturing and mechanical response of nanocomposite laminates. Composites Science and Technology. 2005;65(5):775–779.
[26] Kuo MC, Tsai CM, Huang JC, Chen M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Materials Chemistry and Physics. 2005;90(1):185–195.
[27] Zheng YP, Ning RC, Zheng Y. Study of SiO2 nanoparticles on the improved performance of epoxy and fiber composites. Journal of Reinforced Plastics and Composites, 2005;24(3):223–233.
[28] Pan GL, Guo Q, Tian AG, He ZQ. Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Materials Science and Engineering: A, 2008;492(1–2):383–391.
[29] Uddin MF, Sun CT. Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Composites Science and Technology, 2008;68(7-8):1637–1643.
[30] Critchlow GW and Brewis DM. Review of surface pretreatments for aluminium alloys. International Journal of Adhesion and Adhesives. 1996;16:255–275.
[31] Wernick S, Pinner R, and Sheasby PG. The surface treatment and finishing of aluminium and its alloys. Metals Park, Ohio: ASM International, 1987.
[32] Bijlmer. Jr. PFA. Adhesive Bonding of Aluminium Alloys. Dekker, New York: Marcel Dekker Inc., 1985.
[33] King RG. Surface treatment and finishing of aluminium. Oxford, New York : Pergamon Books, 1988.
[34] Fin N, Dodiuk H, Yaniv AE, Drori L. Oxide treatments of Al 2024 for adhesivebonding- surface characterization. Applied Surface Science, 1987; 28: 11–33
[35] Gibson, RF. Principles of Composite Material Mechanics, McGraw-Hill, New York, USA, 1994:131–152 ,.
[36] Whitney J M, and Nuismer RJ. Stress Fracture Criteria for Laminated Composites Containing Stress-Concentrations, Journal of Composite Materials, 1974;8:253–265.
[37] Nuismer RJ, and Whitney JM. Uniaxial Failure of Composite Laminates Containing Stress Concentrations, Fracture mechanics of composites, American Society for Testing and Materials, Philadelphia, 1975: 117–142,
[38] Pipes RB, Wetherhold RC and Gillespie JW. Notched Strength of Composite-Materials, Journal of Composite Materials, 1979, 13 (Apr):148–160.
[39] Pipes RB, Wetherhold RC and Gillespie JW. Macroscopic Fracture of Fibrous Composites, Materials Science and Engineering, 1980, 45 (3):247–253.
[40] Tan SC. Laminated Composites Containing an Elliptical Opening. II. Experiment and Model Modification, Journal of Composite Materials, 1987, 21 (10):949–968.
[41] Kim JK, Kim DS and Takeda N. Notched Strength and Fracture Criterion in Fabric Composite Plates Containing a Circular Hole, Journal of Composite Materials, 1995, 29 (7):982–998.
[42] Srivastava VK. Notched strength prediction of laminated composite under tensile loading, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, 2002, 328 (1–2):302–309.
[43] Wu GC, Tan Y and Yang JM. Evaluation of residual strength of notched fiber metal laminates, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, 2007, 457 (1–2):338–349.
[44] Fawaz Z and Ellyin F. Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions. Journal of Composite Materials. 1994; 28(15) : 1432–1451
[45] Xiao XR. Modeling of Load Frequency Effect on Fatigue Life of Thermoplastic Composite. Journal of Composite Materials, 1999;33: 1141–1158.
[46] Wu CC. Manufacturing and Mechanical Properties of AS4/PEEK Nanocomposite Laminates. NSYSU: Master Thesis, 2004
[47] Huang YH. Thermal-Mechanical Fatigue Response in Nanocomposite APC-2 Laminates. NSYSU: Master Thesis, 2005
[48] Jen MHR, Tseng YC, Li PY. Fatigue response of hybrid magnesium/carbon-fiber/PEEK nanocomposite laminates at elevated temperature. Journal of Japanese Society for Experimental Mechanics. 2007;7(Special Issue ):S56–S60.
[49] Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and Properties of Polyaryletherketones. Polymer. 1981;22(8):1096–1103.
[50] Chamis CC, and Sinckair JH. Durability/Life of Fiber Composites in Hygrothermomechanical Environments, Composite Materials: Testing and Design, American Society for Testing and Materials, Philadelphia,1982: 498–512
[51] Chamis CC. Simplified composite micromechanics equations for mechanical, thermal, and moisture-related properties, Engineers' guide to composite materials, American Society for Metals, Metals Park, Ohio, 1987:3.8–3.24, ,
[52] Jen MHR, Tseng YC, Chang SC, and Chen M. Mechanical properties in notched AS-4/PEEK APC-2 composite laminates at elevated temperature, Journal of Composite Materials, 2006, 40 (11):955–969.
[53] Park SY, Choi WJ, Choi HS, Kwon H, Kim SH. Recent trends in surface treatment technologies for airframe adhesive bonding processing: a review (1995–2008). The Journal of Adhesion, 2010;86:192–221.
[54] Bishopp A. Handbook of adhesives and sealants. Amsterdam: Elsevier; 2005.
[55] Barnes JA. Thermal-Expansion Behavior of Thermoplastic Composites .2. Journal of Materials Science. 1993;28(18):4974–4982.
[56] Barnes JA, Simms IJ, Farrow GJ, Jackson D, Wostenholm G, Yates B. Thermal-Expansion Characteristics of Peek Composites. Journal of Materials Science. 1991;26(8):2259–2271.
[57] Barnes JA, Simms IJ, Farrow GJ, Jackson D, Wostenholm G, Yates B. Thermal Expansion Behaviour of Thermoplastic Composite Materials. Journal of Thermoplastic Composite Materials. 1990;3(1):66–80.
[58] Unger WJ, Hansen JS. The Effect of Thermal-Processing on Residual Strain Development in Unidirectional Graphite Fiber Reinforced Peek. Journal of Composite Materials. 1993;27(1):59–82.
[59] Ito T, Suganuma T, Wakashima K. A micromechanics-based analysis for tailoring glass-fiber-reinforced thermoplastic laminates with near-zero coefficients of thermal expansion. Composites Science and Technology. 2000;60(9):1851–1861.
[60] Lee CH and Jen MHR. Fatigue response and modelling of variable stress amplitude and frequency in AS-4/PEEK composite laminates, part 1: Experiments, Journal of Composite Materials, 2000, 34 (11):906–929.
[61] Konish HJ and Whitney JM. Approximate Stresses in an Orthotropic Plate Containing a Circular Hole. Journal of Composite Materials, 1975, 9 (2):157–166
[62] Lekhnitskii SG. Anisotropic Plate. Gordon and Breach Science Publishers, 1968, New York.
[63] Tan SC. Finite-Width Correction Factors for Anisotropic Plate Containing a Central Opening, Journal of Composite Materials,1998; 22 (11):1080–1097.
[64] Fawaz Z and Ellyin F. A new methodology for the prediction of fatiguefailure in multidirectional fiber-reinforced laminates. Composites Science and Technology. 1995;53(1): 47–55
[65] Rotem A. The fatigue behavior of composite laminates under various mean stresses, Composite structures. 1991;(17):113–126.
[66] Lee YL, Pan J, Hathaway R, Barkey M. Fatigue Testing and Analysis: Theory and Practice. Burlington, MA: Elsevier Butterworth-Heinemann, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code