Responsive image
博碩士論文 etd-0822100-152645 詳細資訊
Title page for etd-0822100-152645
論文名稱
Title
微加速度計強韌控制之探討
Research on Robust Control of Micromachined Accelerometers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-31
繳交日期
Date of Submission
2000-08-22
關鍵字
Keywords
微加速度計、強韌控制、裂隙度量、mu設計
mu synthesis, accelerometer, robust control, gap metric
統計
Statistics
本論文已被瀏覽 5641 次,被下載 3916
The thesis/dissertation has been browsed 5641 times, has been downloaded 3916 times.
中文摘要
  本論文內容主要是對於微加速度計強韌控制方法之探討。一開始對於不同的微加工技術及各種不同感測方式(質量位置量測方式)的微加速度計做個說明以及比較還有優點缺分析。然而在微加速度計型式及其架構之外,如加以適當之回授控制,可以增加其穩定度、頻寬、靈敏度、解析度、及其動態量測範圍等等的優點;因此論文內容中便先對目前各型微加速度計中的控制器做分析,並在最後以穿隧式微加速度計做為模型,以不同強韌控制的方法( 設計及裂隙度量)設計其控制器,使微加速度計能在不同的環境、不確定性之下還能保有其穩定性及效能;最後並在不同的強韌控制方法之間做分析、比較。
Abstract
This paper presents the research on the robust control of micromachined accelerometers. First, we present different micromaching techniques and compare, analyze the accelerometers with different methods of signal pick-off. Besides the different methods of signal pick-off(the position detection of the seismic mass) and structure designs, we can enhance the performance such as stability, bandwidth, sensitivity, resolution and dynamic range etc. by suitable feedback controllers. So inside the front part of the paper are the analyses for the controllers of different types of accelerometers so far. Moreover, we design the controllers by robust control in different methods with the model of one specific type of micromachined tunneling accelerometer. Because of the robust controllers, the accelerometers can be stable and have good performance under different environments and uncertainties. At last we analyze and compare the controllers designed by -synthesis and gap metric.
目次 Table of Contents
論文摘要(中文)………………………………………………………Ⅰ
論文摘要(英文)………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅶ
符號說明………………………………………………………………Ⅹ
第一章 緒論……………………………………………………………1
  1.1 前言……………………………………………………………1
  1.2 加速度計之用途………………………………………………2
  1.3 加速度計的發展以及文獻回顧………………………………3
  1.4 控制在加速度計中所扮演的角色……………………………6
  1.5 內容簡介及文章架構…………………………………………7
第二章 微加工技術之介紹…………………………………………9
  2.1 前言…………………………………………………………9
  2.2 塊體微加工技術……………………………………………10
  2.3 表面微加工技術……………………………………………11
  2.4 LIGA微加工技術……………………………………………12
  2.5 結論…………………………………………………………13
第三章 微加速度計種類及其原理…………………………………15
  3.1 前言…………………………………………………………15
  3.2 加速度計作用的原理………………………………………15
  3.3 壓電式微加速度計…………………………………………21
   3.3.1 感測原理………………………………………………21
   3.3.2 優缺點及結論…………………………………………22
  3.4 壓阻式微加速度計…………………………………………23
   3.4.1 壓阻性質………………………………………………23
   3.4.2 感測原理………………………………………………27
   3.4.3 不同結構之壓阻式微加速度計………………………28
   3.4.4 優缺點及結論…………………………………………31
  3.5 電容式加速度計……………………………………………32
   3.5.1 訊號的量取……………………………………………32
   3.5.2 靜電力造成的影響……………………………………34
   3.5.3 開路電容式微加速度計………………………………36
   3.5.4 閉迴路容式微加速度計………………………………37
   3.5.5 架構及微加工方式比較………………………………39
   3.5.6 結論……………………………………………………41
  3.6 穿隧式微加速度計…………………………………………42
   3.6.1 感測原理………………………………………………42
   3.6.2 基本架構及相關介紹…………………………………43
   3.6.3 不同形式之穿隧式微加速度計………………………45
  3.7 結論…………………………………………………………49
第四章 微加速度計控制器的分析…………………………………50
  4.1 前言…………………………………………………………50
  4.2 回授驅動力…………………………………………………51
  4.3 壓阻式加速度計的回授控制………………………………52
  4.4 電容式加速度計的回授控制………………………………53
  4.5 穿隧式加速度計的回授控制………………………………56
第五章 強韌控制在微加速度計上的應用…………………………60
  5.1前言…………………………………………………………60
  5.2加速度計之模型(model)…………………………………60
  5.3強韌控制之 設計在穿隧式微加速度計的應用…………61
   5.3.1 設計(mu-synthesis)………………………………61
   5.3.2 分析(mu–analysis)………………………………78
  5.4裂隙度量(gap metric)控制在微加速度計上之應用…69
   5.4.1 裂隙度量控制理論及控制器之求得…………………70
   5.4.2 裂隙度量控制器之 分析……………………………79
  5.5兩種方式之比較……………………………………………82
第六章 結論與討論…………………………………………………88
  6.1結論……………………………………………………………88
  6.2未來希望與發展………………………………………………90
參考文獻………………………………………………………………91
參考文獻 References
[1] W. D. Frobenius, S. A. Zeitman, M. H. White, D. D. O’Sullivan,
and R. G. Hamel, “Microminiature Ganged Threshold Accelerometers Compatible with Integrated Circuit Technologh,” IEEE Trans. Electron Devices, Vol. ED–19, p.37, 1972.

[2] L M. Roylance and J. B. Angell, “ A Batch-Fabricated Silicon Accelerometer, “ IEEE Trans. Electron Devices’’, Vol. ED–26, p.1911, 1979.

[3] K. E. Petersen, A. Shartel and N. F. Raley, “ Micromechanical Accelerometer Integrated with MOD Detection Circuitry,’’ IEEE Trans. Electron Devices, Vol. ED–29, p.23, 1982.

[4] P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim,and M. E. Motamedi, “ Integrated Silicon Microbeam PI-FET Accelerometer,’’ IEEE Trans. Electron Devices, Vol. ED-29, p.27, 1982.

[5] F.Rudolf, “ A Micromechanical Capacitive Accelerometer with A Two-Point Inertial-Mass Suspension,’’ Sensors and Actuators, Vol. 4, p.191-198, 1983.

[6] H. V. Allen, S. C. Terry and D. W. De Bruin, “ Accelerometer Systems with Self-testable Features,’’ Sensors and Actuators, Vol. 20, p.153-161, 1989

[7] K. Yamada, K. Higuchi and H. Tanigawa, “ A Novel Silicon Accelerometer with a Surrounding Mass Structure,’’ Sensors and Actuators, A21-A23, p.308-311, 1990.

[8] H. Seidel, H. Riedel, R. Kollbeck, G. Muck, W. Kupke and M. Koniger, “ Capacitive Silicon Accelerometer with Highly Symmetrical Design,’’ Sensors and Actuators, A21-A23, p.312-315, 1990.

[9] T.W. Kenny, S.B. Waltman, J. K. Reynolds and W. J. Kaiser, “ A micromachined silicon electron tunneling sensor,” Proc. IEEE Micro Electro Mechanical Systems Conf., Napa Valley, USA, p.192-196, 1990.

[10] T.W. Kenny, S.B. Waltman, J. K. Reynolds and W. J. Kaiser,” Micromachined silicon tunnel sensor for motion detection,” Appl. Phys. Lett., 58, p.100-102, 1991.

[11] M. Bao, J. Chen, S. Shen, “ A Micromechanical Structure Eliminating Lateral Effect of Silicon Accelerometer,’’ Proc. 6th Int. Conf. Solid-State Sensors and Actuators(Transducers’91), San Franciso, CA, USA, June 24-27, p.101-103, 1991.

[12] R. P. van Kampen, M. J. Vellekoop, P. M. Sarro, and R. F. Wolffenbuttel, “ Application of Electrostatic Feedback to Critical Damping of an Integrated Silicon Capacitive Accelerometer,’’ The 7th International Conference on Solid-State Sensors and Actuators, 1993.

[13] P. M. Zavracky, F. Hartley, N. Sherman, T. Hansen and K. Warner, “A new force balanced accelerometer using tunneling tip position sensing, Abstr,” Late News Papers, 7th Int. Conf. Solid-State Sensors and Aactuators(Transducers ’93), Yokohama, Japan, June 7-10, p.50-51, 1993.

[14] H. K. Rockstad, T. K. Tand, J. K. Reynolds, T. W. Kenny, W. J. Kaiser, T. B. Gabrielson, “A miniature, high-sensitivity, electron tunneling accelerometer,” Sensors and Actuators A, Vol. 53, p.227-231, 1996.

[15] R. L. Kubena, G. M. Atkinson, W. P. Robinson, and F. P. Stratton, “ A new miniaturized surface micromachined tunneling accelerometer,” IEEE Electron Device Letters, Vol. 17, No. 6, June , p.306-309, 1996.

[16] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, J. D. Grade, H. K. Rockstad and T. W. Kenny, “Characterization of a high-sensitivity micromachined accelerometer with micro-g resolution,” Journal of MicroElectroMechanical Systems, Vol. 7, No.2, p.235-244, 1998.

[17]  周元昉,”微系統科技簡介–台大微系統導論”,台大機械系講義

[18] L. M. Roylance, and J. B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Trans. Electron Devices, ED-26, p.1911-1917, 1979.

[19] O. Lefort, “A miniature, low cost, silicon micromachined servo-accelerometer,” Symposium Gyro Technology, Stuttgart, Germany, p. 8.0-8.32, 1988.

[20]  M. van Paemel, “Interface circuit for capacitive accelerometer,” Sensors and Actuators, 17, p.629-637, 1989.

[21]  F. Rudolf, A Jornod, J Bergqvist,. and H. Leuthold, “Precision accelerometers with µg resolution,” Sensors and Actuators, A21-A23, p.297-302, 1990.

[22] S. Suzuki, S. Tuchitani, K. Sato, S. Ueno, Y. Yokota, M. Sato,
and M. Esashi, “Semiconductor capacitance-type accelerometer with PWM electrostatic servo technique,” Sensors and Actuators, A21-A23, p.316-319, 1990.

[23] K. Warren, “Electrostatically force-balanced silicon accelerometer.” J. of the Inst. of Nav., V. 38, No. 1, p. 91-99, 1991.

[24] U. E. Gerlach-Meyer, Micromachined capacitive accelerometer. Sensors and Actuators, A 25-27, pp. 555-558, 1991.

[25] H. V. Allen, S. C. Terry, and D. W. DeBruin, “Accelerometer systems with self-testable features.” Sensors and Actuators, 20, p. 153-161, 1989.

[26] H. Seidel, Riedel, R. Kolbeck, G. Mueck, W. Kupke, and M. Koeniger, , “Capacitive silicon accelerometer with highly symmetrical design.” Sensors and Actuators, A21-A23, p.312-315, 1990.

[27] W. Henrion, L. Disanza, M. Ip, S. Terry and J H. Jerman, “Wide dynamic range direct digital accelerometer.” IEEE Solid State Sensor and Actuator Workshop, p.153-157, Hilton Head Island, 1990.

[28] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree of freedom response.” 6th Int. Conf. Solid-State Sensors and Actuators (Transducer '91), San Francisco, p. 97-100, 1991.

[29] T. Tschan, N. de Rooij, A. Bezinge, S. Ansermet, and J. Berthoud, “Characterization and modelling of silicon piezoresistive accelerometers fabricated bya bipolar-compatible process.” Sensors and Actuators, A 25-27, p. 605-609, 1991.

[30] W. Yun, R. T. Howe, and P. Gray, “Surface micromachined, digitall y force-balanced accel erometer with integrated CMOS detection circuitry.” IEEE Sol id-State Sensor and Actuator Work shop, p. 126 - 131, Hilton Head Island, 1992.

[31] M. C. L. Ward, D. O. King, and A. M. Hodge, “Performance limitations of surface-machined accelerometers fabricated in polysilicon gate material.” Sensors and Actuators, A46-A47, p. 205-209, 1995.

[32] C. Lu, M. Lemkin, and B. Boser, “A monolithic surface micromachined accelerometer with digital output.” IEEE J. Solid-State Circuits, Vol. 30, No. 12, p.1367-1373, 1995.

[33] W. Kuehnel, and S. Sherman, “A surface micromachined silicon accelerometer with on-chip detection circuitry.” Sensors and Actuators, A45, p.7-16, 1994.

[34] L. Zimmermann, J. Ebersohl, F. Le Hung, J. P. Berry, F. Baillieu, P. Rey, B. Diem, S. Renard, P. Caillat, “Airbag application: a microsystem including a silicon capacitive accelerometer, CMOS switched capacitor electronics and true self-test capability.” Sensors and Actuators, A 46-47, p.190-195, 1995.

[35] K. Chau, S.R. Lewis, Y. Zhao, R.T. Howe, S.F.Bart, and R.G. Marcheselli, “An integrated force balanced capacitive accelerometer for low-g applications.” Sensors and Actuators, A54, p. 472-476, 1996.

[36] Y. Matsumoto, M. Iwakiri, H. Tanaka, M. Ishida, and T. Nakamura, “A capacitive accelerometer using SDB-SOI structure.” Sensors and Actuators, A 53, p.267-272, 1996.

[37] T. Tschan, and N. de Rooij, “Damping of piezoresistive silicon accelerometers.” Sensors and Actuators, A 32, p.375-379, 1992.

[38] S. Marco, J. Samitier, O. Ruiz, A. Herms, and J. Morante, “Analysis of electrostatic damped piezoresistive silicon accelerometer.” Sensors and Actuators, A37-38, p.317-322, 1993.

[39] R. P. van Kampen, M. Vellekoop, P. Sarro, and R. F. Wolffenbuttel, “Application of electrostatic feedback to critical damping of an integrated silicon accelerometer.” Sensors and Actuators, A 43, p.100-106, 1994.

[40] M. Andrews, I. Harris, and G. Turner, “A comparison of squeeze-film theory with measurements on a microstructure.” Sensors and Actuators, A36, p.79-87, 1993.

[41] J. B. Starr, “Squeeze-film damping in solid state accelerometers.” IEEE Solid-State Sensor and Actuator Workshop, p.44-47, Hilton Head Island, 1990.

[42] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree of freedom response.” 6th Int. Conf. Solid-State Sensors and Actuators (Transducer '91), San Francisco, p.97-100, 1991.

[43] L. Zhang, D. Cho, Shiraishi, H. and Trimmer, W. “Squeeze-film damping in micromechanical systems.” ASME, Micromechanical Systems, DSC-Vol. 40, p.149-160, 1992.

[44] H. V. Allen, S. C. Terry, and W. Knutti, “Understanding silicon accelerometers.” Sensors, p.1-6, 1989.

[45] 林容生, “微型加速度計簡介”, 機械月刊第二十二卷第十一期, p.260-266, 十一月, 一九九六年

[46] W. P. Mason and R. N. Thurston, “Use of Piezoresistive materials in the measurement of Displacement, Force and Torque,” J. Acoust. Soc. Am., Vol. 29, No. 10, P.1096-1101, Oct. 1957

[47] C. S. Smith, “Piezoresistive Effect in Germainium and Silicon,” Phys. Rev., Vol.94, No. 1, p.24-49, April 1, 1954

[48] O. N. Tufte and E. L. Stelzer. “Piezoresistive Properties of Silicon Diffused Layers,” J. Appl. Phys., Vol.24, No.2, p.313-318, Feb. 1963.

[49] 童若峻, “壓阻式微型加速度計之設計與製造”, 台灣大學機械工程研究所論文,六月,民國八十四年

[50] M. K. Lim and H. Du, “A micromachined piezoresistive accelerometer with high sensitivity design and modeling,” Microelectronic Engineering , Vol. 49, p.263-272, 1999

[51] D. Crescini, D. Marioli, and Taroni, “A. Low-cost accelerometers: two examples in thick-film technology.” Sensors and Actuators, A55, p. 79-85, 1996.

[52] J. Bay, O. Hansen, and S. Bouwstra, “Design of a silicon microphone with differential read-out of a sealed double parallel-plate capacitor.” Sensors and Actuators,
A53, p. 232-236, 1996.

[53] Y. B. Ning, A. W. Mitchell, and R. N. Tait, “Fabrication of a silicon micromachined capacitive microphone using dry-etch process.” Sensors and Actuators, A53, p. 237-242, 1996.

[54] L. Baxter, “Capacitive sensors.” IEEE Press, New York, 1997.

[55] O. Kroemer, O. Fromhein, H. Gemmeke, T. Kühner, J. Mohr, and M. Strohrmann, “High-precision readout circuits for LIGA acceleration sensors.” Sensors and Actuators, A46-A47, p.196-200, 1995.

[56] A. Burstein, and W. J. Kaiser, “Mixed analog-digital highly sensitive sensor interface circuit for low-cost microsensors.” Sensors and Actuators, A52, p.193-197, 1996.

[57] M. Kraft, “CLOSED LOOP DIGITAL ACCELEROMETER EMPLOYING OVERSAMPLING CONVERSION” July, 1997.
(http://kowloon.eecs.berkeley.edu/~mkraft/mkraft.html#Thesis)

[58]  B. Boxenhorn, and P. Greiff, “Monolithic silicon accelerometer.” Sensors and Actuators, A21-A23, p.273-277, 1990.

[59] Y. Matsumoto and M. Esashi, “Integrated silicon capacitive accelerometer with PLL servo technique,” Sensors and Actuators A, Vol.39, p.209-217, 1993.

[60] “Airbags boom when IC accelerometer sees 50G”, Electronic Design, August 8, 1991.

[61] Sundstrand Data Control, “Q-Flex servo accelerometers.” Data Sheet, Overlake Industrial Park, Redmond, WA98058, 1978.

[62] T. W. Kenny, W. J. Kaiser, “Wide-bandwidth electro-mechanical actuators for tunneling displacement transducers.” Journal Of Microelectromechanical Systems, vol. 3, No. 3, p.97-104, September 1994

[63] Micro Structures & Sensors Lab (Stanford), “Circuits for Tunneling sensors” (http://design.stanford.edu/SMSSL/TunnelingSensors/Overview/TunnelingCircuits.html)

[64] Micro Structures & Sensors Lab (Stanford), “Studying the Low Frequency Noise of Tunneling Sensors.” (http://design.stanford.edu/SMSSL/TunnelingSensors/BasicResearch/LowFreq.html)

[65] J. Grade, A. Barzilai, J. K. Reynolds, C. H. Liu, A. Partridge, L. M. Miller, J. A. Podosek, and T. Kenny, “Low Frequency Drift In Tunneling Sensors.” International Conference on Solid-State Sensors and Actuators ,TRANSDUCERS, p.871-874, 1997

[66] C. H. Liu, H K. Rockstad, T. W. Kenny, “Robust Controller Design via mu-Synthesis for High-Performance Micromachined Tunneling Accelerometers.” Procedings of the American Control Conference, p.247-252, June,1999

[67] K. Zhou and J. C. Doyle, “Essentials of Robust Control”, Prentice Hall Inc., 1998

[68] S. Skogestad, I. Postlethwaite, “Multivariable Feedback Control Analysis and Design”, John Wiley & Sons Ltd, 1996

[69] “ -Analyss and Synthesis toolbox”, MUSYN and Mathworks Inc, June 1998.

[70] Zames, G. and A. K. El-Sakkary, “Unstable systems and feedback: The gap metric.” IEEE Trans. Automat. Contr., Vol.41, No.10, p1527-1530, 1980.

[71] G. Vinnicombe, “Frequency domain uncertainty and the graph topology.” IEEE Trans. Automat. Contr., Vol.38, No.9, p.1371-1383, 1993

[72] T.T. Georgiou, “On the computation of the gap metric,” Systems and Control Letters, Vol. 11, p.253-257, 1988

[73] Gray C. Hsieh, Michael G. Safonov, “Conservatism of the Gap Metric,” Proceedings of the 30th Conference on Decision and Control, p. 299-302, December, 1991.

[74] K. Glover and D. McFarlane, “Robust Stabilization of Normailized Coprime Factor Plant Descriptions with -bounded Uncertainty,” IEEE Transactions on Automatic Control, vol. AC-34, No. 6, August, 1989.

[75] T.T. Georgiou and M.C. Smith, “Optimal Robustness in the Gap Metric,” IEEE Transactions on Automatic Control, Vol. AC-35, No. 6, June, 1990.

[76]  J. C., Greenwood, “Silicon in mechanical sensors,” J. Phys. E: Sci. Instrum., 21, p.1114-1128, 1988.

[77]  A. Spineanu, R. Kielbasa, and P. Benabes, “Design of a piezoelectric accelerometer with sigma-delta servo technique.” Proc. Eurosensors X, Vol. 1, p.379-382, Leuven, 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code