Responsive image
博碩士論文 etd-0822102-092447 詳細資訊
Title page for etd-0822102-092447
論文名稱
Title
以數值方法模擬大鵬灣初級生產力之研究
Numerical Study of the Primary Production in the Tapeng Bay
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-02
繳交日期
Date of Submission
2002-08-22
關鍵字
Keywords
大鵬灣、生地化模式、潟湖、優養化、感潮海域、數值模式
lagoon, estuary, numerical model, biogeochemical model, eutrophication, Tapeng Bay
統計
Statistics
本論文已被瀏覽 5746 次,被下載 1938
The thesis/dissertation has been browsed 5746 times, has been downloaded 1938 times.
中文摘要
本研究利用三維數值模式COHERENS建立潟湖水理及生態模式,並以位於台灣西南部之大鵬灣作為研究案例,模擬大鵬灣內海流、營養鹽與浮游生物之間的動態影響與機制,並嘗試利用模式模擬的結果估算營養鹽的通量及初級生產力。
大鵬灣為一半封閉狀態之海岸潟湖(coastal lagoon),且僅有一個開口與高屏海域進行水體交換。氣候表現上,全年日照充足,夏季受西南季風的影響炎熱潮溼、冬季則溫和乾燥。在大鵬灣週圍有數條排水渠道,附近鄉鎮未經處理之家庭及養殖之廢污水經由這些排水渠道注入灣內,由於雨季集中在夏季,其他季節渠道內的流量不大,顆粒物質沈降累積在底床上,當雨季來臨時,大量雨水匯集成巨大的流量沖刷排水渠底床並將沈積已久的沈積物揚起並挾帶進入灣內,這些沈積物中包含大量的顆粒物質及營養鹽,造成灣內溫度、鹽度、生態及營養鹽的變化。大鵬灣內風平浪靜,當地許多居民在灣內從事養蚵、箱網養殖等漁業生產的工作,附近鄉鎮的漁塭養殖亦大多抽取大鵬灣內之海水做為水源,成為當地居民賴以維生的水域。但是大鵬灣受到本身地形與氣候上的影響,再加上人類活動的頻繁介入,使得大鵬灣的生態正遭受到破壞而逐漸失去平衡。
本研究關於大鵬灣的物理、營養鹽、生態及氣象等相關特性的模擬,在水理方面,除了考慮灣內海流循環受到開口潮汐的水位變化及附近城鎮放污排水入流的驅動外,並將溫鹽所引起之密度變化對海流循環造成影響納入計算;在生態方面,建立以浮游生物、碎屑有機物、溶解性營養鹽及溶氧之海洋生態系統來表現大鵬灣生態;在浮游生物方面,其生長受到水溫、光照強度及營養鹽等因素之影響;在營養鹽供應方面,假設在矽及磷供應充足情形下,以氮循環為營養鹽的主要模擬對象。藉由這些基本假設,並在邊界條件中根據季節的變化輸入不同的營養鹽濃度及溫鹽狀況;再加上不同的氣候因素,進行模擬分析。
經由系列的模擬結果顯示,大鵬灣內流場循環控制營養鹽的空間分佈,營養鹽濃度影響著大鵬灣內浮游生物生長,而供應大鵬灣內浮游生物生長所需之營養鹽來源,旱季時,潮口為最主要供應並佔主導地位,而在雨季,由於排水渠逕流量增大,使得大鵬灣內營養鹽供應變成由排水渠邊界所主導。另外,大鵬灣溶氧受到浮游生物行光合作用的強烈影響,當浮游生物快速生長的海域就會有高溶氧的產生。
最後,由浮游生物碳通量依照Nixon (1995)優養化定義比對顯示:夏季大鵬灣呈現優養化的現象,當夏季又遇到雨季來臨時,則大鵬灣呈現超優養的情形,至於冬季則大鵬灣呈現中度優養的情形。經由各項模擬結果歸納造成大鵬灣優養化的原因,是由於大鵬灣灣內流場循環不佳,加上外部營養鹽不斷的進入灣內,蓄積其中所形成。

Abstract
A 3D numerical model – COHERENS has been applied to construct a coupled hydrodynamic and ecological model for studying Tapeng Bay, which is a coastal lagoon situated in southwest of Taiwan. The simulations have been carried out to study the influences and their interacting mechanisms among the tidal currents, nutrients and micro planktons in the Lagoon. Model results have been compiled for calculating the nutrient fluxes and the primary productions in the Tapeng Bay.
Tapeng Bay is a semi-enclosed coastal lagoon, which has only one tidal inlet for exchanging lagoon water with the coastal currents along the Kaoping coast on the narrow shelf in southwest of Taiwan. The study area is situated in the tropical climate zone where has sunshine through out the year except the rainy days concentrated in the summer season, which is influenced by the southwest monsoon. There are several drainage channels that collect the untreated domestic sewerage and wastewater discharged from the fish farms surround the lagoon. The discharges in these channels are usually low during the dry season. The solid contained in the water are mostly settled on the channel beds. During the raining season, high discharges due to the storm rainfalls re-suspend the sediments and carry into the lagoon. These sediments, which contain high concentrations of suspended solids and nutrients, cause the Bay water highly eutrophied. Therefore, the Bay is fully influenced by the seasonal variations. There are a lot of aquaculture, i.e. oyster farming and fish cage, in the Bay area since the water is calm and rich. But the balance between the nature and the anthropogenic disturbance is breaking.
Besides the water level variation generated from the tidal inlet, the fresh water inflow from 3 major channels are included in the model to simulate their influences to the hydrodynamics and the density driven circulation due to changing salinities and temperatures from these inlets. Plankton, detritus, dissolved nutrients and dissolved oxygen is taking into account as the model variables for this marine eco-system. The plankton growth is mainly generated due to temperature, light intensity and nutrient level. Only the nitrogen cycle has been considered in the model by assuming there are enough supply of phosphate and silicate. Model runs have been carried out according to different seasonal situations of the boundary conditions. Furthermore, climates (heats, lights, winds, etc) are also included in the model to distinct seasonal characteristics.
It is shown, from the model results, that the currents mainly dominate the distribution of nutrients in the Tapeng Bay. The nutrient level controls plankton growth. The nutrient sources are mainly coming from the coastal currents (through tidal inlet) in the wintertime, whereas the summer source was from the drainage channels due to the wash out by the high discharge rates. Beside these, dissolved oxygen concentrations in the Bay water are strongly influenced by the plankton growth rate, faster the photosynthesis higher the DO concentrations.
The eutrophication levels of the Tapeng Bay water have been compiled using the plankton carbon level modeled at various situations. According to the Nixon standard (1995), Tapeng Bay has eutrophication through out the year. Mesotrophic condition can be observed during the wintertime, whereas the hypereutrophic level can be concluded during the raining season.

目次 Table of Contents
謝誌----------------------------------------------------------------------------- I
中文摘要---------------------------------------------------------------------- II
英文摘要---------------------------------------------------------------------- IV
目錄---------------------------------------------------------------------------- VI
圖目錄------------------------------------------------------------------------- IX
表目錄------------------------------------------------------------------------- XII
第一章緒論
1-1研究緣起---------------------------------------------------------------- 1
1-2文獻回顧---------------------------------------------------------------- 1
(一)近岸海域(河口與潟湖)生地化相關研究------------------- 1
(二)數值方法模擬近岸海域(包含河口與潟湖)相關研----- 3
1-3研究目的---------------------------------------------------------------- 4
1-4研究架構---------------------------------------------------------------- 5
第二章 COHERENS模式介紹
2-1緒言---------------------------------------------------------------------- 6
2-2物理模式解說---------------------------------------------------------- 8
2-2-1水理控制方程式------------------------------------------------- 8
2-2-2鹽度擴散傳輸方程式------------------------------------------- 9
2-2-3溫度擴散傳輸方程式------------------------------------------- 10
2-2-4密度方程式------------------------------------------------------- 10
2-2-5日照強度---------------------------------------------------------- 11
2-2-6氣象因子---------------------------------------------------------- 12
2-3生態及沈積物模式介紹---------------------------------------------- 14
2-3-1無機顆粒對生態部份的影響--------------------------------- 17
2-3-2浮游生物部份---------------------------------------------------- 19
2-3-2-1溫度影響------------------------------------------------------- 23
2-3-2-2浮游生物生長速度---------------------------------------- 23
(a)受光照強度控制下浮游生物之生長速度------------- 24
(b)受營養鹽濃度控制下浮游生物之生長速度---------- 25
2-3-2-3浮游生物對營養鹽之吸收------------------------------- 28
(a)浮游生物對硝酸氮之吸收------------------------------- 29
(b)浮游生物對氨氮之吸收---------------------------------- 30
2-3-2-4攝食---------------------------------------------------------- 33
2-3-3碎屑有機物質部份---------------------------------------------- 34
2-3-3-1碎屑有機物質之再礦化作用---------------------------- 35
2-3-4溶解性營養鹽及溶氧部份------------------------------------- 36
2-3-4-1好氧性硝化作用------------------------------------------- 38
2-3-5無機性顆粒------------------------------------------------------- 39
2-3-6顆粒物質在底床活動過程------------------------------------- 39
2-3-6-1介面層------------------------------------------------------- 39
2-3-6-2顆粒性物質之沈降及再懸浮作用---------------------- 40
2-3-6-3顆粒物質在介面層中的變化過程---------------------- 41
2-3-7溶解性物質在邊界通量交換情形---------------------------- 42
2-3-7-1底部營養鹽通量變化------------------------------------- 42
2-3-7-2水體與空氣之間溶氧交換------------------------------- 43
2-4生態模式中各項反應方程式---------------------------------------- 44
2-4-1水體部份---------------------------------------------------------- 44
2-4-2介面層部份------------------------------------------------------- 47
2-4-3表底層之溶解性物質通量變化------------------------------- 47
第三章 大鵬灣生態模式應用
3-1大鵬灣環境背景介紹------------------------------------------------- 48
(一)在氣象方面------------------------------------------------------ 49
(二)人類活動情形--------------------------------------------------- 49
(三)未來展望-------------------------------------------------------- 50
3-2大鵬灣模式概述------------------------------------------------------- 50
3-3水理模式之邊界條件-------------------------------------------------- 53
3-4水理模式之檢定-------------------------------------------------------- 55
3-5大鵬灣生態模式參數設定-------------------------------------------- 59
3-6各種假設狀況描述----------------------------------------------------- 62
3-6-1案例A描述------------------------------------------------------ 62
3-6-2案例B描述------------------------------------------------------- 69
3-6-3案例C描述------------------------------------------------------- 70
3-6-4案例D描述------------------------------------------------------- 78
3-6-5案例E描述------------------------------------------------------- 79
第四章 結果與討論
4-1緒言----------------------------------------------------------------------- 80
4-2大鵬灣生態模擬結果與實測資料比對與分析-------------------- 80
4-3寒流對大鵬灣生態模擬影響分析與比較-------------------------- 89
4-4降雨期間,大鵬灣生態模擬結果----------------------------------- 92
4-5排水渠疏濬對大鵬灣降雨期間生態影響模擬-------------------- 100
4-6發生降雨事件對大鵬灣生態模擬造成的影響------------------- 106
4-7冬季及夏季大鵬灣生態模擬結果分析與比較-------------------- 116
4-8各模擬狀況下,出入大鵬灣流量及氮通量比較---------------- 121
4-8-1寒流的影響------------------------------------------------------- 122
4-8-2疏濬的影響------------------------------------------------------ 127
4-8-3降雨事件的影響------------------------------------------------- 132
4-8-4各案例之基礎生產力及大鵬灣優養化情形---------------- 135


第五章結論與建議
5-1結論----------------------------------------------------------------------- 137
5-2未來研究改善建議----------------------------------------------------- 139
參考文獻------------------------------------------------------------------------141
參考文獻 References
台加工程顧問公司,2000,大鵬灣風景特定區水質改善研究及規劃期末報告,交通部觀光局。
王騰崇,2001,大鵬灣竹片上附生藻類生產力之時空變化,國立中興大學植物學研究所碩士論文。
李適宇、林衞強,2000,珠江口三維水質數學模型研究,海岸海洋資源與環境學術研究會。
林幸助、邵廣昭、郭世榮、謝蕙蓮、翁韶蓮、陳一鳴、羅文增、洪佳章,1998,台灣七股沙洲潟湖生態系模式,第四屆海岸濕地生態及保育研討會論文集。
易任,1975,水文工程學下冊,東華書局,共243頁
邵廣昭、劉祖乾、洪佳章、翁韶蓮、張正、羅文增、謝蕙蓮、陳章波、郭世榮、陳孟仙、陳志遠、林幸助,1999,曾文溪口海岸地區陸海交互怍用之研究成果論文集,共255頁。
洪佩瑩,2001,大鵬灣碳及營養鹽之生地化作用及通量研究,國立中山大學海洋地質及化研究所碩士論文。
柳文成,1998,感潮河系之水理與水質動態傳輸模擬研究,國立台灣大學農業工程學研究所博士論文。
張正銘,1996,感潮湖泊污染物傳輸擴散之研究,國立台灣海洋大學河海工程學系碩士論文。
陳冠彥,1980,二維港灣水理及水質之模擬,國立台灣大學土木工程研究所碩士論文。
陳鎮東,1994,海洋化學,荗昌書局,共551頁。
國立中山大學海洋環境及工程學系,2000a,大鵬灣風景特定區排水溝晴天水質及水量調查試驗計畫,交通部觀光局大鵬灣國家風景區管理處。
國立中山大學海洋環境及工程學系,2000b,大鵬灣周邊及上游集水區排水溝雨季水質底泥調查試驗計畫,交通部觀光局大鵬灣國家風景區管理處。
管衛兵、王麗婭,2000,珠江口營養物質迴圈和溶解氧動力的數值類比,海岸海洋資源與環境學術研究會。
謝蕙蓮,2000,高屏海域碎屑食物網之研究(I):碎屑來源及分布,永續發展研究研討會論文集,共18頁。
蘇建安,1997,海洋污染擴散模式應用於海岸潟湖之研究,國立中山大學海洋環境及工程學系碩士論文。
蘇惠美、林幸助、羅文增,2000,高屏海域藻類基礎生產力之研究,高屏海域陸海交互作用之研究(I),永續發展研究研討會論文集,19-24頁。
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983)“The ecological role of water-column microbes in the sea”, Marine Ecology Progress Series, 10, 257-263.
Bagge, O. (1977) Norway Lobster, Danish institute for Fisheries and Marine Research, 39-44. (in Danish)
Caperon, J. and Meyer, J. (1972a) “Nitrogen-limited growth of marine phytoplankton-I. Changes in population characteristics with steady-state growth rate”, Deep Sea Research, 19, 601-618.
Caperon, J. and J. Meyer, (1972b). “Nitrogen-limited growth of marine phytoplankton-II. Uptake kinetics and their role in nutrient limited growth of phytoplankton”, Deep Sea Research, 19, 619-632.
Carpenter, J. H. (1966) “New measurements of oxygen solubility in pure and natural water”, Limnology and Oceanography, 11, 264-277.
Chapelle A., Lazure, P. and. Menesguen, A (1994) “Modeling Eutrophication Events in a Coastal Ecosystem .Sensitivity Analysis”, Estuarine, Coastal and Shelf Science, 39, 529-548.
Deleersnijder, E. and Ruddick, K.G. (1992) “A generalized vertical coordinate for 3D marine models”,Bulletin de la Sociéyé Royale des Sciences de Liége, 61, 489–502.
Di Toro, D.M., and Connolly, J.P. (1980) “Mathematical Models of Water Quality in Large Lakes, Part 2: Lake Erie”, EPA-600/3-80-065, 90-101.
Dogniaux, R. (1984) “Eclairemwnt énergétique solaire direct diffus et global des surfaces orientées et inclines. Partie I: Algorithmes et methodologies”,Miscellanea Série B ,59, pp.46.
Dogniaux, R. (1985) “Programme général de calcul des éclairements solaires énergétiques et lumineux des surfaces orientées. Ciels clairs, couverts et variables”, Miscellanea Série ,21, pp.37.
Droop, M.R. (1968) “Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri”, Journal of the Marine Biological Association of the United Kingdom, 48, 689-733.
Droop, M.R., Mickelson M.J., Scott J.M. and Turner M.F. (1982) “Light and nutrient status of algal cells”, Journal of the Marine Biological Association of the United Kingdom, 62, 403-434.
Dussart, B. M. (1965) “Les différentes categories de plankton”, Hydrobiologia, 26, 72-74.
Eppley, R.W. (1972) “Temperature and phytoplankton growth in the sea”, United States Fisheries and Wildlife Service Bulletin, 70, 1063-1085.
Flynn, K. J., Fasham , M. J. R. and Hipkin, C. R (1997a) “Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton”, Philosophical Transactions of the Royal Society, 352, 1625-1645.
Flynn, K. J. and Fasham, M. J. R. (1997b) “A short version of the ammonium-nitrate interaction model”, Journal of Plankton Research, 19, 1881-1897.
Gasol, J. M., del Giorgio, P. A. and Duarte, C. M. (1997) “Biomass distribution in marine planktonic communities”, Limnology and Oceanography, 42, 1353-1363.
Geider, R. K., Maclntyre, H. L. and Kana, T. M. (1998) “A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients and temperature”, Limnology and Oceanography, 43, 679-694.
Gill, A. E., (1982). “Atmosphere-Ocean Dynamics. International Geophysics Series”, Vol.30. Academic Press, Orlando, 662pp.
Goldman, J. C. and Dennett, M. R. (1991) “Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates”, Marine Biology, 109, 369-378.
Harrison, W. G., Platt, T. and Lewis, M. R., (1987) “f-Ratio and its relationship to ambient nitrate concentration in coastal waters”, Journal of Plankton Research, 9, 235-248.
Harzallah, A. and Chapelle, A. (2002). “Contribution of climate variability to occurrences of anoxic crises ‘malaïgues’ in the Thau lagoon”, Oceanologica Acta, 25, 79–86.
Jones, S.E., Jago, C.F. and Simpson, J.H. (1995) “Modelling suspended sediment dynamics in tidally mixed and periodically stratified water: progress and pitfalls. In:C.B. Pattiaratchi(Editor), Mixing Processes in Estuaries and Coastal Seas. Coastal and Estuarine Studies”, American Geophysical Union, 41,315-338.
Katsaros, K. B. (1990) Paramterization schemes and models for estimating the surface radiation budget. In: G. L. Geernaert and W. J. Plant (Editors), Surface Waves and Fluxes, Vol. 2 - Remote sensing . Kluwer Academic Publishers, Dorderecht, 339-368.
Lancelot, C. and Billen, G. (1985) “Carbon-nitrogen relationships in nutrient metablosm of coastal marine ecosystems” , Advances in Aquatic Microbiology, 3, 263-321.
Liss, P. S. (1988) “Tracers of air-sea gas exchange”, Philosophical Transactions of the Royal Society of London, A325, 93-103
Luytens, P. J., Jones, J. E., Proctor, R., Tabor, A., Tett, P. & Wild-Allen, K. (1999) COHERENS - a coupled hydrodynamical-ecological model for regional and shelf seas: user documentation. Management Unit of the Mathematical Models of the North Sea, MUMM Report, pp. 911.
Maestrini, S. Y., Robert, J.-M., Leftley, J. W. and Collos, Y. (1986) “Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae”, Journal of experimental marine Biology and Ecology, 102, 75-98.
Nixon, S. W. (1995) “Coastal marine eutrophication : a definition social causes, and future concerns”, OPHELA. 41, 199-220.
Rosati, A. and Miyakoda K. (1988) “A general circulation model for upper ocean simulation”, Journal of Physical Oceanography, 18, 1601-1626.
Setiapermana, D. (1990) “Quantum yield of phytoplankton photosynthesis in relation to nutrient staus”, Ph. D. thesis, University of Wales.
Sfriso, A., Pavoni, B. and Marcomini, A. (1995) “Nutrient distributions in the surface sediment of the central lagoon of Venice”, The Science of the Total Environment, 172, 21-35.
Tett, P. (1987) Modelling the growth and distribution of marine microplankton. Society for General Microbiology Symposium 41, 'Ecology of Microbial Communities', Cambridge University Press, 387-425.
Tett, P. (1990a) “A three layer vertical and microbiological processes model for shelf seas”, Proudman Oceanographic Laboratory Report 14, pp.85.
Tett, P. (1990b) The Photic Zone. In: P.J. Herring, A.K. Campbell, M. Whitfield and L. Maddock (Editors), Light and Life in the Sea. Cambridge University Press, Cambridge, U.K., pp.59-87.
Tett, P. (1998). Parameterising a microplankton model. ISBN 0902703609. Report, Napier University, Edinburgh, pp.55+ix.
Tett, P. and Droop, M.R. (1988) Cell quota models and planktonic primary production. In 'Handbook of Laboratory Model Systems for Microbial Ecosystems', ed. Wimpenny, J.W.T., CRC Press, Florida, 2, 177-233.
Tett, P., Jackson, G., Foos, F., Nival, P., Rodriguez, J. and Wolf, U. (1993) Modelling particle fluxes. NATO ASI Series, 110. Towards a model of ocean biogeochemical processes, ed. Evans, G.T. & Fasham, and M.J.R., Springer-Verlag, Berlin, 227-236.
Tett, P. and Smith, C. (1997) Modelling benthic-pelagic coupling in the North Sea. (New Challenges for North Sea Research - 20 years after FLEX '76, Hamburg, 21-23 Oct 1996). Berichte aus dem Zentrum für Meeres- und Klimaforschung. Reihe Z: Interdisziplinäre Zentrumsberichte, 2, 235-243.
Tett, P. and Walne, A. (1995) “Observations and simulations of hydrography, nutrients and plankton in the southern North Sea”, Ophelia, 42, 371-416.
Tett, P. and Wilson, H. (2000) “From biogeochemical to ecological models of marine pelagic systems”, Journal of Marine Systems, 25, 431-446.
Thomann, R.V. (1975) Mathematical Modeling of Phytoplankton inLake Ontario, 1. Model Development and Verification. U.S.Environmental Protection Agency, Corvallis, OR. EPA-600/3-75-005.
Thomann, R.V., R.P. Winfield, and J.J. Segna. (1979) Verification Analysis of Lake Ontario and Rochester Embayment Three Dimensional Eutrophication Models. U.S. Environmental Protection Agency, Grosse Ile, MI, EPA-600/3-79-094.
Thomann, R.V., R.P. Winfield, Di Toro, D.M. and O'Connor, D.J. (1976) Mathematical Modeling of Phytoplankton in Lake Ontario, 2.Simulations Using LAKE 1 Model. U.S.Environmental ProtectionAgency, Grosse Ile, MI, EPA-600/3-76-065.
UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science , 36, UNESCO, Paris.
Williams, P.J.A. (1981) Incorporation of microheterotrophic processes into the classical paradigm of the plankton food web. Kieler Meeresforschungen, 5, 1-28.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code