Responsive image
博碩士論文 etd-0822104-235721 詳細資訊
Title page for etd-0822104-235721
論文名稱
Title
利用高錳酸鉀氧化法處理三氯乙烯污染之地下水
Treatment of TCE - Contaminated Groundwater using Potassium Permanganate Oxidation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-25
繳交日期
Date of Submission
2004-08-22
關鍵字
Keywords
高錳酸鉀、磷酸氫二鈉、三氯乙烯、二氧化錳
trichloroethylene, potassium permanganate, manganese dioxide and dibasic sodium phosphate
統計
Statistics
本論文已被瀏覽 5671 次,被下載 5170
The thesis/dissertation has been browsed 5671 times, has been downloaded 5170 times.
中文摘要
本研究為利用高錳酸鉀氧化法處理三氯乙烯污染之地下水,以去離子水及地下水為進行氧化反應之試劑水,在不同高錳酸鉀與TCE之莫耳比值([KMnO4/TCE], P值)( 2P、5P、10P及20P)、三氯乙烯濃度(0.5 ppm、5 ppm、20 ppm及100 ppm)、初始pH值(2.1、6.3及12.5)、振盪器混合速率(0 rpm、50 rpm及200 rpm)以及磷酸氫二鈉莫耳比值([Na2HPO4/Mn2+], D值)(0D、50D、100D及300D),在完全混合之理想狀態下觀察氧化反應之機制及成效,探討三氯乙烯氧化去除效率、高錳酸鉀消耗率,以及不同D值在氧化過程中對氧化副產物二氧化錳減量之影響。此外,並進一步在不同D值對二氧化錳之減量之過程,探討反應系統中三氯乙烯氧化去除效率及高錳酸鉀消耗率分別隨時間變化之影響與趨勢。在本研究中亦針對高錳酸鉀對三氯乙烯在地下水與去離子水反應系統中氧化反應之差異性進行探討。

在研究結果中發現,在TCE之氧化去除效率方面,當TCE濃度< 5 ppm與P值< 20之條件下,高錳酸鉀對TCE之氧化反應階次為以二階階次反應,且總反應速率常數k值約等於 0.8 M-1s-1。當TCE濃度相同但P值不同之條件下,隨P值愈高,TCE氧化去除效率愈快;當P值相同但TCE濃度不同之條件下,隨TCE濃度愈高,TCE氧化去除效率愈快。振盪器轉速並不影響TCE之氧化去除效率。其氧化反應路徑可能大部份以下列兩種化學反應方程式來進行(6KMnO4 + 5C2HCl3 + 3H+ → 6Mn2+ + 10CO2 + 6K+ + 15Cl-)( MnO4- + 3e- + 2H2O → MnO2 + 4OH-)。在反應初始pH值為酸性(pH 2.10)或中性(pH 6.3)環境下,將不影響高錳酸鉀對TCE之氧化去除效率。但在初始pH值為鹼性(pH 12.5)環境下,將使高錳酸鉀自行還原成二氧化錳,進而完全消耗怠盡,降低高錳酸鉀對TCE之氧化去除效率。

在二氧化錳之生成方面,二氧化錳的生成主要是來自三種反應途徑:(1)高錳酸鉀氧化TCE後直接產生二氧化錳固體。(2)高錳酸鉀氧化TCE後所產生的二價錳離子(Mn2+),再次被高錳酸鉀因氧化作用,而使二價錳離子變為帶有四價錳離子之二氧化錳固體。(3)高錳酸鉀在弱鹼性環境中,帶七價錳離子之高錳酸鉀還原成帶有四價錳離子之二氧化錳固體。另外在相同反應條件下,以在地下水之實驗組別所生成之二氧化錳較容易產生膠結沈澱作用。

在二氧化錳之減量去除方面,添加磷酸氫二鈉能夠有效地降低氧化過程中二氧化錳之生成,其抑制生成率可達到47.2%至81.5%;磷酸氫二鈉之添加並不會降低TCE之氧化去除效率,且可降低氧化反應過程中高錳酸鉀之消耗率。在相同反應條件下,D值愈高二氧化錳去除率愈好;且在相同D值之情況時,P值愈高二氧化錳去除率愈好。反應初始pH值在酸性(pH 2.1)下,二氧化錳便不易生成,在反應過程中有效抑制二氧化錳之生成;反應初始pH值愈高時則反之。在氧化反應之最終產物分析方面,高錳酸鉀對TCE之氧化去除作用後,並沒有發現其他具有毒性比TCE較高之氯氧化副產物(例如氯乙烯或二氯乙烯)。
Abstract
In this study, potassium permanganate was used as the oxidant to remediate TCE–contaminated groundwater. The objectives of this bench-scale oxidation study include the following: (1) evaluate the overall TCE oxidation rate with the presence of KMnO4, (2) assess the consumption rate of KMnO4, (3) evaluate the effect of the oxidation by-product, manganese dioxide (MnO2), on the TCE oxidation rate. The control factors in this study include (1) four different molar ratios of KMnO4 to TCE [designated as P, (KMnO4/TCE) = 2, 5, 10, and 20]; (2) four different TCE concentration (0.5, 5, 20, and 100 ppm); (3) three different initial pH values (2.1, 6.3, and 12.5); (4) three different oscillator mix rate (0, 50, and 200 rpm); (5) four different molar ratios of dibasic sodium phosphate (Na2HPO4) to Mn2+ [designated as D, (Na2HPO4/Mn2+) = 0, 50, 100, and 300D], and (6) two different medium solutions [deionized (DI) water and groundwater]. Moreover, the effects of D values on TCE oxidation rate and KMnO4 consumption rate were also evaluated.
Experimental results indicate that a second-order reaction model could be applied to express the oxidation reaction of TCE by KMnO4, and the calculated rate constant equals 0.8 M-1s-1. Results also show that the higher the P value, the higher the TCE oxidation rate. Moreover, TCE oxidation rate was not affected under low pH conditions (pH = 2.10 and 6.3). However, TCE oxidation rate dropped under high pH condition (pH 12.5) due to the transformation of KMnO4 to manganese dioxide.
The following three pathways would cause the production of manganese dioxide: (1) direct oxidation of TCE by KMnO4, (2) production of Mn2+ after the oxidation of TCE by KMnO4, and Mn2+ was further oxidized by KMnO4 to form manganese dioxide, and (3) transformation of KMnO4 to manganese dioxide under high pH condition. Results also show that more manganese dioxide was produced while groundwater was used as the medium solution.
Results show that the produced manganese dioxide was 47.2% - 81.5% less with the addition of dibasic sodium phosphate. Moreover, the variations in D values would not affect the TCE oxidation rate. However, the increase in D value would decrease the consumption of KMnO4. Results also reveal that significant inhibition of manganese dioxide production was observed under low pH condition. Furthermore, no TCE oxidation byproducts were detected after the oxidation reaction.
Key words: KMnO4, TCE, manganese dioxide and dibasic sodium phosphate
目次 Table of Contents
目錄
頁次
摘要. I
ABSTRACT. Ⅲ
謝誌. Ⅴ
目錄. Ⅵ
表目錄. Ⅹ
圖目錄 ⅩⅡ

第一章 前言 1
1-1 研究緣起 1
1-2 研究內容 2
1-3 研究目的 7

第二章 文獻回顧 9
2-1 地下水污染物.. 9
2-1-1 地下水污染物來源 9
2-1-2 地下水污染物種類 13
2-2 含氯有機溶劑概述 16
2-2-1 含氯有機溶劑之特性與應用 16
2-2-2 含氯有機溶劑之毒性 17
2-2-3 三氯乙烯有機溶劑之管制標準 21
2-3 受含氯有機化合物污染之土壤及地下水整治技術 22
2-4 現地化學氧化法之國外應用現況. 23
2-5 現地化學氧化法之適用範圍. 28
2-6 現地化學氧化法之分類與概述. 31
2-6-1 氧化劑反應與應用特性. 31
2-7 高錳酸鉀氧化法反應機制. 39
2-7-1 高錳酸鉀在不同酸鹼值中之反應. 39
2-7-2 高錳酸鉀氧化法反應途徑. 43
2-8 高錳酸鉀氧化法所面臨之瓶頸. 45

第三章 研究設備、材料與方法 47
3-1 研究設計 47
3-2 研究設備 48
3-3 研究材料與藥品…………………… 49
3-3-1 實驗用試劑水…………………… 49
3-3-1-1 去離子水…………………… 49
3-3-1-2 地下水…………………… 51
3-3-2 實驗藥品…………………… 52
3-4 研究方法…………………… 55
3-4-1 高錳酸鉀對三氯乙烯氧化去除試驗…………………… 55
3-4-2 磷酸氫二鈉對二氧化錳之抑制生成試驗……………… ……55
3-4-3 硫代硫酸鈉對高錳酸鉀氧化TCE之終止反應…………… 56
3-5 研究步驟…………………… 57
3-6 分析條件…………………… 59
3-6-1 TCE之分析條件…………………… 59
3-6-2 TCE之GC/MS分析條件…………………… 60
3-6-3 氯離子之分析條件…………………… 61
3-6-4 高錳酸鉀與二氧化錳之分析條件…………………… …….61
第四章 結果與討論 ..64
4-1 TCE與P值之影響 65
4-1-1 相同TCE濃度在不同P值下之氧化去除效率 ……..65
4-1-1-1 0.5 ppm TCE. 65
4-1-1-2 5 ppm TCE. 67
4-1-1-3 20 ppm TCE. 70
4-1-1-4 100 ppm TCE. 72
4-1-2 不同TCE濃度在相同P值下之氧化去除效率. 76
4-1-2-1 2P. 76
4-1-2-2 5P. 78
4-1-2-3 10P. 80
4-1-2-4 20P. 82
4-1-3 氯離子濃度之平衡. 84
4-2 D值對MnO2生成、TCE氧化去除與KMnO4消耗率之影響 86
4-2-1 D值對二氧化錳生成率之影響 ……..88
4-2-1-1 去離子水之2P與20P. 88
4-2-1-2 地下水之2P與20P. 91
4-2-1-3 2P之去離子水與地下水. 98
4-2-1-4 20P之去離子水與地下水. 102
4-2-2 D值對TCE氧化去除效率之影響 104
4-2-2-1 去離子水之2P與20P. 104
4-2-2-2 地下水之2P與20P. 106
4-2-2-3 2P及20P分別之去離子水與地下水. 108
4-2-3 D值對高錳酸鉀消耗率之影響 109
4-2-3-1 去離子水之2P與20P. 109
4-2-3-2 地下水之2P與20P. 111
4-2-4 氯離子濃度之平衡 113
4-3 初始pH值對MnO2生成、TCE氧化去除與KMnO4消耗率之影響 .115
4-3-1 初始pH值對二氧化錳生成率之影響 115
4-3-2 初始pH值對TCE氧化去除效率之影響 117
4-3-3 初始pH值對高錳酸鉀消耗率之影響 118
4-4 振盪器混合速率對TCE氧化去除效率之影響 ..122
4-5 氧化反應之最終產物分析 123

第五章 結論與建議 131
5-1 結論. 132
5-2 建議. 135
參考文獻. 138


表 目 錄
頁次
表2-1 台灣重大地下水污染案件 10
表2-2. 546個美國國家優先整治場址(NPL)中常見的20種污染物及其所佔比例. 12
表2-3. 含氯有機溶劑主要物性一覽. 17
表2-4. 國內含氯有機溶劑之使用現況. 18
表2-5 三氯乙烯規定許可之目的用途及禁止運作事項. 18
表2-6 國內有機溶劑種類及分類中之第一類有機溶劑一覽表 20
表2-7 常見含氯有機溶劑對人體健康危害性及對物質相容性. 20
表2-8 TCE之毒性劑量效應. 21
表2-9 適用於不同污染物強度之整治技術. 24
表2-10 現地化學氧化應用案例彙整. 27
表2-11 四種常見氧化劑及其衍生自由基之氧化還原電位. 29
表2-12 四種氧化劑適用污染物種類. 29
表2-13 四種氧化劑優缺點彙整表 38
表2-14 高錳酸鉀在不同酸鹼值中之氧化還原作用. 40
表3-1 去離子水中陰離子物種與濃度分析結果. 49
表3-1 去離子水中陰離子物種與濃度分析結果(續). 50
表3-2 去離子水中陽離子物種與濃度分析結果……………... 50
表3-2 去離子水中陽離子物種與濃度分析結果(續). 50
表3-3 地下水中陰離子物種與濃度分析結果. 51
表3-3 地下水中陰離子物種與濃度分析結果(續). 51
表3-4 地下水中陽離子物種與濃度分析結果. 52
表3-4 地下水中陽離子物種與濃度分析結果(續). 52
表3-5 本研究用藥品之基本物性與化性. 54
表3-5 本研究用藥品之基本物性與化性(續). 54
表3-6 TCE之GC/ECD分析操作條件. 59
表3-7 氧化反應最終產物之GC/MS分析操作條件. 60
表4-1 不同P值對不同TCE濃度在反應時間為240 min時之理論與實測氯離子平衡濃度比較. 85
表4-2 在不同P值與D值下於反應時間為240 min時之理論與實測氯離子平衡濃度比較. 114
表4-3 P值2P在5 ppm TCE氧化系統中之不同初始pH值與反應最終pH值變化. 121
表4-4 去離子水與地下水中利用不同D值在不同P值之5 ppm TCE氧化反應系統下對氧化副產物二氧化錳抑制生成率(%). 122
表4-5 原去離子水樣品之揮發性有機化合物分析. 125
表4-6 去離水中利用P值2P之5 ppm TCE氧化反應系統下於反應時間240 min後之氧化反應最終產物分析結果. 126
表4-7 去離水中利用P值20P之5 ppm TCE氧化反應系統下於反應時間240 min後之氧化反應最終產物分析結果 127
表4-8 原地下水樣品之揮發性有機化合物分析. 128
表4-9 地下水中利用P值2P之5 ppm TCE氧化反應系統下於反應時間240 min後之氧化反應最終產物分析結果. 129
表4-10 地下水中利用P值20P之5 ppm TCE氧化反應系統下於反應時間240 min後之氧化反應最終產物分析結果. 130

圖 目 錄
頁次
圖2-1 非水相有機溶劑在土壤與地下水層中之分佈行為 15
圖2-2 Mn於pH-pε之分佈圖(25℃) 41
圖2-3 二氧化錳之表面構造及其反應途徑 43
圖2-4 三氯乙烯氧化作用之路徑 44
圖3-1 二氧化錳在波長為526nm及418nm之分子吸收度 63
圖4-1 0.5 ppm TCE在不同P值下之氧化去除效率(C/C0 [TCE])與反應時間之關係圖 66
圖4-2 0.5 ppm TCE在不同P值下之氧化去除效率(ln M-XA/M(1- XA))與反應時間之關係圖 66
圖4-3 5 ppm TCE在不同P值下之氧化去除效率(C/C0 [TCE])與反應時間之關係圖 69
圖4-4 5 ppm TCE在不同P值下之氧化去除效率(ln M-XA/M(1-XA))與反應時間之關係圖 69
圖4-5 20 ppm TCE在不同P值下之氧化去除效率(C/C0 [TCE])與反應時間之關係圖 71
圖4-6 20 ppm TCE在不同P值下之氧化去除效率(ln M-XA/M(1-XA))與反應時間之關係圖 72
圖4-7 100 ppm TCE在不同P值下之氧化去除效率(C/C0 [TCE])與反應時間之關係圖 74
圖4-8 100 ppm TCE在不同P值下之氧化去除效率(ln M-XA/M(1- XA))與反應時間之關係圖 74
圖4-9 不同TCE濃度在相同為2倍P值下之氧化去除效率(C/C0 [TCE]) 77
圖4-10 不同TCE濃度在相同為2倍P值下之氧化去除效率(ln M-XA/M(1-XA)) 77
圖4-11 不同TCE濃度在相同為5倍P值下之氧化去除效率(C/C0 [TCE]) 79
圖4-12 不同TCE濃度在相同為5倍P值下之氧化去除效率(ln M-XA/M(1-XA)) 79
圖4-13 不同TCE濃度在相同為10倍P值下之氧化去除效率(C/C0 [TCE]) 81
圖4-14 不同TCE濃度在相同為10倍P值下之氧化去除效率(C/C0 [TCE]) 81
圖4-15 不同TCE濃度在相同為20倍P值下之氧化去除效率(C/C0 [TCE]) 83
圖4-16 不同TCE濃度在相同為20倍P值下之氧化去除效率(ln M-XA/M(1-XA)) 83
圖4-17 於去離子水中利用不同D值在不同P值之5 ppm TCE氧化反應系統下對氧化副產物二氧化錳生成率之影響 90
圖4-18 於去離子水中利用不同D值在不同P值之5 ppm TCE氧化反應系統下對氧化副產物二氧化錳之去除率(%) 90
圖4-19 於地下水中利用不同D值在不同P值之5 ppm TCE氧化反應系統下對氧化副產物二氧化錳生成率之影響 94
圖4-20 高錳酸鉀對TCE進行氧化反應前之水溶液示意圖 94
圖4-21 反應系統中在不添加磷酸氫二鈉時,含有高錳酸鉀氧化TCE之後所生成沈澱態之黑色不溶水性二氧化錳固體之水溶液示意圖 95
圖4-22 為反應系統中在添加磷酸氫二鈉時,含有高錳酸鉀氧化TCE之後所生成溶解態之二氧化錳膠體與被磷酸鹽螯合後所生成溶解態磷酸氫錳之水溶液示意圖 95
圖4-23 為兩種試劑水之去離子水與地下水中利用不同D值在相同的P值2P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 96
圖4-24 為兩種試劑水之去離子水與地下水中利用不同D值在相同的P值20P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 96
圖 4-25 於地下水中利用不同D值在不同P值之5 ppm TCE氧化反應系統下對氧化副產物二氧化錳之去除率(%) 97
圖4-26 兩種試劑水之去離子水與地下水在相同P值為2P之5 ppm TCE氧化反應系統中於不同D值下對氧化副產物二氧化錳生成率之影響 101
圖4-27 兩種試劑水之去離子水與地下水在相同P值為2P之5 ppm TCE氧化反應系統中於不同D值下對氧化副產物二氧化錳之去除率(%) 101
圖4-28 兩種試劑水之去離子水與地下水在相同P值為20P之5 ppm TCE氧化反應系統中於不同D值下對氧化副產物二氧化錳生成率之影響 103
圖4-29 兩種試劑水之去離子水與地下水在相同P值為20P之5 ppm TCE氧化反應系統中於不同D值下對氧化副產物二氧化錳之去除率(%) 104
圖4-30 於去離子水中利用不同D值在相同P值為2P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 105
圖4-31 於去離子水中利用不同D值在相同P值為2P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 106
圖4-32 於地下水中利用不同D值在相同P值為2P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 107
圖4-33 於地下水中利用不同D值在相同P值為20P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 108
圖4-34 於去離子水中利用不同D值在相同P值為2P之5 ppm TCE氧化反應系統下對高錳酸鉀消耗率之影響 110
圖4-35 於去離子水中利用不同D值在相同P值為20P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 111
圖4-36 於地下水中利用不同D值在相同P值為2P之5 ppm TCE氧化反應系統下對高錳酸鉀消耗率之影響 112
圖4-37 於地下水中利用不同D值在相同P值為20P之5 ppm TCE氧化反應系統下對TCE氧化去除效率之影響 113
圖4-38 P值2P之5 ppm TCE氧化系統於不同初始pH值下對二氧化錳生成率之影響 116
圖4-39 P值為2P之5 ppm TCE氧化系統於不同初始pH值下對TCE氧化去除效率之影響 118
圖4-40 P值為2P之5 ppm TCE氧化系統於不同初始pH值下對高錳酸鉀消耗率之影響 120
圖4-41 P值為20P之5 ppm TCE氧化系統於不同振盪器轉速下對TCE氧化去除效率之影響 123
參考文獻 References
王一雄、陳尊賢、李達源,土壤環境污染與農藥,明文書局,1997.
行政院環境保護署環境檢驗所,「土壤中酸鹼值測定方法」,土壤檢測方法,NIEA S410.60T,1998.
行政院環境保護署,地下水污染防治,行政院環境保護署,http://www.epa.gov.tw/waterpollution/四科/HP1-2.html,1999.
李尚凡、林振隆、陳寶祺、張漢昌、蔡明瞭,反應工程,1997.
李尚璋,Fenton Oxidation of TCE DNAPL,屏東科技大學 環境工程與科學系,碩士論文,2000.
林俊一,反應工程學,文京圖書,2000.
林財富、鄭仲凱,「現地化學氧化技術之發展與案例分析」,第八屆土壤及地下水污染整治研討會論文集,2003.
阮國棟,1998,多氯化烷烯化合物使用與環境風險問題─兼論地下水防治政策及技術趨勢,化學年會,1998.
毒性化學物質緊急防治及災害防救,毒性化學物質專業技術管理人員訓練班,1999年3月(第一版).
陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究-期末報告」,國立中央大學應用地質研究所,1998.
許益源、張王冠、呂慶慧、羅彗瑋、陳誼彰,「含重金屬土壤萃取及地下水曝氣技術」,工業技術研究院化學工業研究所報告,1998.
楊萬發,「水及廢水處理化學」,茂昌圖書有限公司,1999.
賈儀平、劉振宇、邱絹琇、沈世宏,多環芳香化合物排放影響地下水污染管制相關法規研訂,台灣大學地質系,台北,1998.
蔡文田,含氯有機溶劑之毒性及新陳代謝機制,工業污染防治,第43期,p175~187,1992.
蔡文田、邱坤彥,蒸氣脫脂用含氯溶劑之特性、管制和污染防治,工業污染防治,第41期,p145~160,1992.
盧至人,「地下水的污染整治」,國立編譯館,1998.
盧明俊、陳重南、粟華新、詹益欽,「利用針鐵礦催化過氧化氫分解2-氯酚」,第二十二屆廢水處理技術研討,1997.
Amanda M. Struse, Wilson Clayton, Bruce Marvin, Todd Harris. Oxidative Treatment of He Compounds with KMnO4-Bench scale and Field Scale Studies. The First International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater, Niagara, Ontario, Canada, June, 2001.
Amarante D. Applying in situ chemical oxidation . Pollution Engineering,32 ,2:40-42, 2000.
Bedient, P.B., Rifai, H.S. and Newell, C.J. Ground Water Contami- nation: transport and remediation, 2nd Ed, Prentice-Hall, New York, pp.401-422, 1999.
Cleasby, J.L. Iron and Manganese Removal-A Case Study, J. Am. Wat. Wks. Ass., 67 : 2 : 147-149, 1975.
Cline, S.R., West, O.R., Siegrist R.L., Holden, W.L. Performance of in situ chemical oxidation field demonstration at DOS sites. In: Proceedings of the In Situ Remediation of the Geoenvironment Conference, Minneapolis, MI, 1997.
Dan B., Todd, B., Coleman K., Mullen D., Oyelowo L. Permanganate In-Situ Chemical Oxidation of TCE in a Fractured Bedrock Aquifer Edwards Air Force Base, California. The first International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater, Niagara, Ontario, Canada, June, 2001.
Daniel, J. M. Trichloroethylene Oxidation By Permanganate:Treating Soil in the Vadose Zone, The First International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater, Niagara, Ontario, Canada, June, 2001.
Dijkshoorn P. In-Situ chemical oxidation of chlorinated solvents with potassium permanganate on a site in Belgium. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1686-1691, May 12-16 Gent , Belgium., 2003.
Environmental Security Technology Certification Program(ESTCP), 1999. Technology Status Review:In-Situ Oxidation, Http://www.estcp .gov/
Freedman, D.L. and Gossett, J.M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. And Environ. Microbiol. Vol.55, No.9, 2144-2151, 1989.
Freedman, F. and Kappos, J.C. Permanganate ion oxidations: 15. Additional evidence ofr formation of soluble (colloidal) manganese dioxide during the permanganate ion oxidation of carbon-carbon double bonds in phosphate-buffered solutions. J. Am. Chem. Soc. 107 (23), 6628-6633., 1985.
Gates, D.D., and Siegrist R.L. In-Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide, Journal of Environmental Engineering, Vol.121(9), pp.639~644, 1995.
Heron, T., Christensen, J.S., Westergaard, C., Skov, H. Permanganate Oxidation of PCE in Moraine Clay at a Dry Cleaning Facility Part 1:Choice of oxidation, laboratory testing &Design considerations. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1699, May 12-16 Gent , Belgium, 2003.
Hood, E.D., Thomson, N.R., Grossi, D., Farquhar, G.J. Experimental determination of the kinetics rate law for the oxidation of perchloroethylene by potassium permanganate. Chemosphere 40, 1383-1388, 2000.
Huang, K.C., Couttenye , R.A .,Hoag ,G..E. Kinetics of Heat-Assisted Persulfate Oxidation of Methyl tert-Butyl Ether(MTBE), Chemoshpere,49,413-420, 2002.
Huang, K.C., Hoag G.E., Chheda, Pradeep, Woody, Bernard A., Dobbs, Gregory M. A pilot scale study of oxidation of trichloroethylene by sodium permanganate. In: Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, pp. 145-152, 2000.
Huang, K.C., Hoag G.E., Chheda, Pradeep, Woody, Bernard A., Dobbs, Gregory M. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials B87, 155–169, 2001.
Huang, K.C., Hoag G.E., Chheda, Pradeep, Woody, Bernard A., Dobbs, Gregory M. Chemical oxidation of trichloroethylene with potassium permanganate in a porous medium. Advances in Environmental Research (7) 217-229, 2002.
Hunkeler, D., R. Aravena, B. L. Parker, J. A. Cherry, and X. Diao. Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: Laboratory and field studies. Environmental Science and Technology. 37(4): 798-804, 2003.
International Technology and Regulatory Cooperation(ITRC).Technical and Regulatory Guidance for In-Situ Chemical Oxidation of Contaminated Soil and Groundwater., 2001. Http://www.itrcweb .org/
International Technology and Regulatory Cooperation (ITRC). In Situ Chemical Oxidation . ITRC Training Course for SRP , October., 2002. Http://www.itrcweb .org/
Jensen, R. In-Situ Oxidation of PHA Contaminants Associated with Former Manufactured Gas Plants, Teleconference of In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago, IL. Http://www.clu-in.org/
Knocke, W. R., Shorney, H. L. and Bellamy,J. D. Examining the Reactions Between Soluble Iron, DOC and Alternative Oxidant During Conventional Treatment, Jour. AWWA, 86, 117-127, 1994.
Knocke, W. R., Hoehn, R.C. and Sinsabaugh, R. L. Using Alternative Oxidants to Remove Dissolved Manganese From Waters Laden with Organics, Jour. AWWA, 79, 75-79, 1987.
Kelly K.L., Marley , M.C., Sperry, K.L. In-situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering , July 21-24, Niagara Falls, Ontario, Canada., 2002.
Ladbury, J. W. and Cullis, C. F. Kinetics and Mechanism of Oxidation by Permanganate, CHEM. Reviews, 58, 403-438, 1958.
Lee, E.S., Seol, E.S., Fang, Y.C., Schwartz, F.W. Destruction Efficiencies and Dynamics of Reaction Fronts ASssociated with the Permanganate Oxidation of Trichloroethylene. Environ. Sci. Technol., 37, 2540-2546, 2003.
Lewis R.W. Key Factor for a Successful ISCO Application with Permanganate. Teleconference of In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago, IL. Http://www.clu-in.org/.
Li, Z.M., Comfort, S.M. and Shea,P.J. Destruction of, Trinitrotoluene by Fenton Oxidation, “Journal of Environmental Quality, Vol.26, pp.480~487, 1997.
Liang, C., Bruell, C.J. Kinetics of Thermally Activated Persulfate Oxidation of Trichloroethylene(TCE) and 1,1,1- Trichloroethane(TCA). Proceedings of The First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, June 25-29, Niagara Falls, Ontario,Canada., 2001.
Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179, 1997.
Mata-Perez, F., Perez-Benito, J.F. Identification of the product from the reduction of permanganate ion by trimethylamine in aqueous phosphate buffers. Can. J. Chem. 63, 988-992, 1985.
Oostrom, M., Dane, J.H. Calibration and automation of a dual-energy gamma system ofr applications in soil science, Agronomy and Soils Dept. Ser. 145 Ala. Agric. Exp. Stn., Auburn, AL, USA, 1990.
Oostrom, M., Hofstee, C., Dane, J.H., Lenhard, R.J. Single-sorurce gamma radiation procedures for improved calibration and measurements in porous media. Soil Science 163(8), 646-656, 1998.
Palmer, C. J., and Johnson R. L. Physical Processes Controlling the Transport of Non-aqueous Phase Liquids in the Subsurface , Seminar Publication: Transport and Fate of Contaminants in the Subsurface, Chapter 3, EPA-625-4-89-019, pp. 23-28, 1989.
Plaisier, W., Bennen, M., Pancras, T., Bouwhuis, E. Performing in-situ chemical oxidation with Fenton’s reagent at a former gas work in Rotterdam. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1700-1780, May 12-16 Gent , Belgium., 2003.
Posselt, H. S. and Anderson, F. J. Cation Sorption on Colloidal Hydrous Manganese Dioxide, Environ. Sci. & Technol., 2 : 12 : 1087-1093, 1968.
Posselt, H. S. and Anderson, F. J. Effect of Permanganate pretreatment and Coagulation with Dual Coagulants on Algae Removal in Direct Filtration, J. Water SRT-Aqua, 45, 5, 316-326, 1996.
Poulson, S.R., Naraoka, H. Carbon Isotope Fractionation during Permanganate Oxidation of Chlorinated Ethylenes(cDCE, TCE, PCE). Environ. Sci. Technol., 36, 3270-3274, 2002
Reitsma, S., and Marshall, M. Experimental study of oxidation of pooled NA.PL. In Proceeding from the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 22-25, 2000.
Schroth, M.H., Oostrom, M., Wietsma, T.W., Istok, J.D. In-situ oxidation of trichloroethene by permanganate - effects on porous medium hydraulic properties. Journal of Contaminant Hydrology 50, 79–98, 2001.
Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T., Stickney, B. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J. Contam. Hydrol. 29, 205-224, 1998.
Seol, Y., Schwartz, F. W. Phase-transfer catalysis applied to the oxidation of nonaqueous phase trichloroethylene by potassium permanganate. Journal of Contaminant Hydrology 44 185-201, 2000
Siegrist, R.L. Fundamentals of In Situ Chemical Oxidation (ISCO). Teleconference of In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago,IL. Http://www.clu-in.org/.
Siegrist, R.L., Lowe, K.S., Murdoch, L.C., Case, T.L., Pickering, D.A. In situ oxidation by fracture emplaced reactive solids. J. Environ. Eng., 429-440, 1999.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi.M.L., Lowe, K.S. Principle and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press., 2001.
Siegrist RL, Urynowicz MA, Crimi ML, Lowe KS. Genesis and effects of particles produced during in situ chemical oxidation using permanganate. J Environ Eng; 128(11), p.1068–79, 2002.
Sperry, K.L., Kane, R.W., Koll, C.S., Cody, R.J. In Situ Chemical Oxidation of Vinyl Chloride Using Sodium Permanganate. The first International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater, Niagara, Ontario, Canada, June, 2001.
Stewart, R. Oxidation by permanganate. In: Wiberg, K.B. (Ed.), Oxidation in organic chemistry, Part A, Chap. 1. Academic Press, New York, pp. 1-68, 1965.
Stumm, W. and Morgan, J. J., Chap 8 : Oxidation and Reduction ; Equilibria and icrobial Mediation , Aquatic Chemistry, 3th edition, John Wiley and Sons Inc., 462, 1996.
Tratnyek, P.G., Johnson, T.M., Warner, S.D., Clarke, H.S., Baker, J.A. In situ treatment of organics by sequential reduction and oxidation. In: Proceedings of the First International Conference on Remediation of Chlorinated and Recalcitrant Compounds, vol. C1-5, pp. 371-376, 1998.
Truax, C.T. Investigation of the in situ potassium permanganate oxidation of residual DNAPLs located below the groundwater table. M.S. Thesis, University of Waterloo, Ontario, Canada, 1993.
U.S. Environmental Protection Agency. Ground-Water Research -Research Description. EPA/600/9-89/088.
Urynowicz, M.A., Siegrist, R.L. Chemical Degradation of TCE DNAPL by Permanganate. In: Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, p.75-82, 2000.
Urynowicz, M.A., Siegrist, R.L. Manganese Dioxide Deposition at the DNAPL Interface. The first International Conference on Oxidation and Reduction Technologies for In-situ Treatment of Soil and Groundwater, Niagara, Ontario, Canada, June, 2001.
Vella, P.A., Veronda, B. Oxidation of trichloroethylene: a comparison of potassium permanganate and Fenton’s reagent. Chemical oxidation: technology for the nineties. In: Proceedings of the Third International Symposium, PA, pp. 62-73, 1992.
Walton, J., Labine, P., Reidies, A. The chemistry of permanganate in degradative oxidations. In: Eckenfelder, W.W., Bowers, A.R., Roth, J.A. (Eds.), First International Symposium for chemical Oxidation: Technologies for the Nineties. Chemical Oxidation. Technomic Publishing, Lancaster, pp. 205-221, 1991.
West, O.R., Cline, S.R., Holden, W.L., Gardner, F.G., Schlosser, B.M., Thate, J.E., Pickering, D.A., Houk, T.C. A Full-scale Demonstration of In Situ Chemical Oxidation through Recirculation at X-701b Site. Oak Ridge National Laboratory, Oak Ridge, TN, 1997.
Yeh, C. K., and Novak, J. T. The Effect of Hydrogen Peroxide on the Degradation of Methyl and Ethyl Tert-Butyl Ether in Soils, Water Environment Research, Vol.67(5), p.828~834, 1995.
Yan, Y. Eugene, Schwartz, Frank W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J. Contam. Hydrol. 37, 343-365, 1999.
Yan, Y. Eugene, Schwartz, Frank W. Kinetics and Mechanisms for TCE Oxidation by Permanganate. Environ. Sci. Technol., 34, 2535-2541, 2000
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code