Responsive image
博碩士論文 etd-0822105-173022 詳細資訊
Title page for etd-0822105-173022
論文名稱
Title
運用多目標基因演算法於微陣列之探針設計
Probe Design Using Multi-objective Genetic Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-24
繳交日期
Date of Submission
2005-08-22
關鍵字
Keywords
微陣列、多目標最佳化基因演算法、探針設計
multi-objective optimization genetic algorithm, probe design, microarray
統計
Statistics
本論文已被瀏覽 5718 次,被下載 1744
The thesis/dissertation has been browsed 5718 times, has been downloaded 1744 times.
中文摘要
DNA 微陣列(Microarray)技術廣泛使用在分子生物學和 DNA 計算領域方面。在進行微陣列實驗之前,必須先得到一組探針(probe),這些探針本身是與所感興趣的目標基因互補的DNA子字串;而且實驗的可靠性大大地與探針序列的品質有關。因此,我們必須小心謹慎地在目標序列選擇探針。對於探針設計策略,我們提出使用多目標基因演算法的新方法來解決。所提出的演算法能有效率的找出一組可用的探針,並且使用以後置樹(suffix tree)為基底的模組加速單一性(specificity)限制條件檢查。實驗結果顯示,我們所提出的演算法可對DNA微陣列同時設計出多個探針,這些探針不僅遵循設計特性,而且具有單一性。
Abstract
DNA microarrays are widely used techniques in molecular biology and DNA computing area. Before performing the microarray experiment, a set of subsequences of DNA called probes which are complementary to the target genes of interest must be found. And its reliability seriously depends on the quality of the probe sequences. Therefore, one must carefully choose the probe set in target sequences. A new method for probe design strategy using multi-objective genetic algorithm is proposed. The proposed algorithm is able to find a set of suitable probes more efficient and uses a model based on suffix tree to speed up the specificity constraint checking. The dry dock experimental results show that the proposed algorithm finds several probes for DNA microarray that not only obey the design properties, but also have specificity.
目次 Table of Contents
Contents
Chapter 1. Introduction 1
Chpater 2. Background materials and literature reviews 4
2.1 Background materials 4
2.1.1 DNA microarray 4
2.1.2 Multi-objective Optimal Genetic Algorithm 5
2.2 Literature reviews 10
Chapter 3. Definition of the constraints on probe design 13
Chapter 4. The proposed algorithm 16
4.1 Encoding 18
4.2 Initialization 19
4.3 Fitness evaluation 19
4.3.1 Objectives of the problem 19
4.3.2 Mathematic model 27
4.4 GA Operator 28
4.4.1 Selection 28
4.4.2 Crossover 30
4.4.3 Mutation 33
Chpater 5. Experiments 38
5.1 Materials 38
5.2 Dry dock experiments 39
Chpater 6. Discussion 46
Chpater 7. Conclusions 47
References 48
參考文獻 References
References
[1] M. J. McPherson, P. Quirke and G. R. Taylor (1993), PCR: A Practical Approach. Oxford University Press, New York.
[2] C. R. Newton and A. Graham (1997), PCR: Second Edition. Information Press, Etnsham, Oxon, UK.
[3] J. S. Wu, C. N. Lee, C. C. Wu and Y. L. Shiue (2003), Primer design using genetic algorithm. Bioinformatics, Vol. 20 no. 11, pp. 1710–1717.
[4] R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras and D. J. Lockhart (1999), High density synthetic oligonucleotide arrays. Affymetrix, Inc. 3380 Central Expressway, Santa Clara, California 95051, USA.
[5] M. Chee, R. Yang, E. Hubbell, A. Berno, X.C. Huang, D.Stern, J. Winkler, D. J. Lockhart, M. S. Morris and S. P. Fodor (1996), Accessing genetic information with high-density DNA arrays. Science, Vol. 274, pp. 610-614.
[6] C. M. Fonseca, and P. J. Fleming (1993), Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423.
[7] D. Gerhold, T. Rushmore and C. T. Caskey (1999), DNA chips: promising toys have become powerful tools. In Trends in biochemical sciences, pp. 168–173.
[8] K. D. Jong (1988), Learning with genetic algorithms: an overview. Machine Learning 3. Kluwer Academic, Hingham, MA, pp. 121-138.
[9] D. E. Goldberg (1989), Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, New York.
[10] J. Holland (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, MI: MIT Press.
[11] C. A. C. Coello (1999), An updated survey of evolutionary multi-objective optimization techniques: state of the art and future trends. Special Session on Multi-objective Optimization at the 1999 Congress on Evolutionary Computation, Vol. 1, pp. 3-13, IEEE Service Center.
[12] C. Debouck and P. N. Goodfellow (1999), DNA Microarrays in drug discovery and development. Nature supplement Genetics, Vol. 21, Suppl. pp 48-50.
[13] F. Li and G. Stormo (2001), Selection of optimal DNA oligos for gene expression analysis. Bioinformatics, Vol. 17, pp. 1067–1076.
[14] J. Borneman, M. Chrobak, G. D. Vedova, A. Figueroa and T. Jiang (2001), Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics. Vol. 17, Suppl. pp.39-48.
[15] J. M. Rouillard, C. J. Herbert and M. Zuker (2002), Oligoarray: Genome-scale oligonucleotide design for microarrays. Bioinformatics (Applications Note), Vol. 18, pp.486–487.
[16] L. Kaderali and A. Schliep (2002), Selecting signature oligonucleotides to identify organisms using DNA arrays. Bioinformatics. Vol. 18, pp. 1340-1349.
[17] S. Rahmann (2002), Rapid Large-Scale Oligonucleotide Selection for Microarrays. Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB’02). pp. 54-63.
[18] A. Krause, M. Kr
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code