Responsive image
博碩士論文 etd-0822110-200245 詳細資訊
Title page for etd-0822110-200245
論文名稱
Title
應用現地化學氧化技術處理受含氯溶劑污染之地下水
Application of in situ chemical oxidation technology to remediate chlorinated-solvent contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-26
繳交日期
Date of Submission
2010-08-22
關鍵字
Keywords
重質非水相液體、高錳酸鉀、含氯有機溶劑、現地化學氧化法
dense non-aqueous phase liquids, in situ chemical oxidation, potassium permanganate, Chlorinated-organic compounds
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
含氯溶劑大量被使用於工業上金屬及電子零件之清洗及乾洗等作業,當其洩漏至地下水後,無法完全溶解並形成重質非水相液體,其中以三氯乙烯(trichloroethylene, TCE)和四氯乙烯(perchloroethylene, PCE)最為常見。現地化學氧化法為處理受TCE污染之地下水的整治技術之一,其原理是將氧化劑送入到地下,以轉換目標污染物,並降低其質量、移動性及毒性的方法。本研究以高錳酸鉀(KMnO4)氧化劑進行TCE去除,研究分為實驗室及現地試驗兩部分,實驗室試驗包括氧化劑衰減試驗、土壤氧化劑需求量試驗(soil oxygen demand, SOD)、磷酸氫二鈉(Na2HPO4)對二氧化錳(MnO2)之抑制生成試驗、高錳酸鉀批次氧化試驗及管柱試驗等。氧化劑衰減試驗結果顯示高錳酸鉀於自然環境下不易自解,而SOD試驗結果則顯示SOD隨著氧化劑濃度增高呈上升趨勢。在抑制生成試驗結果顯示,隨莫耳濃度比([Na2HPO4]/[KMnO4])增加,磷酸氫二鈉可提升抑制二氧化錳生成率。在高錳酸鉀批次氧化試驗結果顯示,氧化劑濃度越高,其污染物氧化效率有增加之趨勢,且隨反應時間增加,氧化效率逐漸下降;一階動力模擬結果顯示假一階速率常數隨氧化劑濃度上升有升高趨勢,半衰期為24.3-251 min;二階動力模擬結果顯示二階速率常數隨氧化劑濃度上升呈下降趨勢。管柱試驗結果顯示管柱內TCE貫穿體積為5.04-5.06 pore volume(PV),通入高錳酸鉀能有效氧化TCE污染物,其氧化時間及氧化效率優於以去離子水沖排;另外添加抑制劑磷酸氫二鈉並不會影響TCE之氧化去除效率。本研究之第二階段為現地試驗,研究中挑選某一TCE污染場址進行高錳酸鉀之氧化試驗。研究中所選定之測試區塊共包含八口整治井,其TCE初始濃度及位置分別為上游C1=0.59 mg/L、C1-E=0.64 mg/L、C1-W=0.61 mg/L三口;中游EW-1=0.65 mg/L、EW-1E=0.62 mg/L、EW-1W=0.57 mg/L;下游口C2=0.62 mg/L及C3=0.35 mg/L,每口相鄰監測井距離約為3 m。第一次試驗中於三口注藥井(C1、C1-E、C1-W)注入2,700 L之KMnO4(濃度:5000 mg/L),於每6小時進行一次灌注,共進行3次注藥,總試驗期程為72小時。注入後除三口注藥井之TCE濃度下降至偵測極限以下(<0.0025 mg/L),其餘監測井濃度變化不大。第二次試驗於注藥井EW-1注入2700 L之KMnO4(濃度:5000 mg/L),於每48小時進行一次灌注,共進行6次注藥,總試驗期程為264小時。注入後注藥井EW-1 TCE濃度降低至偵測極限以下,而監測井(C1、C1-E、C1-W、EW-1E、EW-1W、C2及C3)TCE濃度下降至0.35-0.49 mg/L。顯示以高錳酸鉀氧化劑整治受含氯溶劑污染之地下水具一定成效。造成兩次試驗成效差異之原因為試驗注入頻率及期程不同,且注入位置和受地下水地形之因素,而影響氧化劑傳輸進而造成兩次試驗成效相異。現地試驗後,地下水温度及pH值無太大改變,維持在26-28℃及6-7。導電度及氧化還原電位則有上升趨勢,導電度由500 μS/cm上升至1000 μS/cm,而氧化還原電位則由200 mV上升至600 mV。高錳酸鉀、二氧化錳及總錳濃度於注入井有明顯提升,而總有機碳、鹼度及氯離子數值未有顯著改變。此外,試驗前後各監測井之微水試驗(slug test)結果顯示,試驗前後水力傳導係數維持在10-4-10-5 m/sec,並無顯著變化。此結果顯示現地試驗期間並未顯著影響現地地下水之透水性。
Abstract
Groundwater at many existing and former industrial sites and disposal areas is contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethylene (TCE) is one of the most ubiquitous of these compounds. In situ chemical oxidation (ISCO) has been successfully used for the removal of TCE. The objective of this study was to apply the ISCO technology to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) was used as the oxidant during the ISCO process. The study consisted bench-scale and pilot-scale experiments. In the laboratory experiments, the major controlling factors included oxidant concentrations, effects of soil oxidant demand (SOD) on oxidation efficiency, and addition of dibasic sodium phosphate on the inhibition of production of manganese dioxide (MnO2). Results show that higher molar ratios of KMnO4 to TCE corresponded with higher TCE oxidation rate under the same initial TCE concentration condition. Moreover, higher TCE concentration corresponded with higher TCE oxidation rate under the same molar ratios of KMnO4 to TCE condition. Results reveal that KMnO4 is a more stable and dispersive oxidant, which is able to disperse into the soil materials and react with organic contaminants effectively. Significant amount of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Results show that the increase in the first-order decay rate was observed when the oxidant concentration was increased, and the half-life was approximately 24.3 to 251 min. However, the opposite situation was observed when the second-order decay rate was used to describe the reaction. Results from the column experiment show that the breakthrough volumes were approximately 50.4 to 5.06 pore volume (PV). Injection of KMnO4 would cause the decrease in TCE concentration through oxidation. Results also indicate that the addition of Na2HPO4 would not inhibit the TCE removal rate. In the second part of this study, a TCE-contaminated site was selected for the conduction of pilot-scale study. A total of eight remediation wells were installed for this pilot-scale study. The initial TCE concentrations of the eight wells were as follows: C1 = 0.59 mg/L, C1-E = 0.64 mg/L, C1-W = 0.61 mg/L, EW-1 = 0.65 mg/L, EW-1E = 0.62 mg/L, EW-1W = 0.57 mg/L, C2 = 0.62 mg/L, C3 = 0.35 mg/L. C1, EW-1, C2, and C3 were located along the groundwater flow direction from the upgradient (C1) to the downgradient location (C3), and the distance between each well was 3 m. C1-E and C1-W were located in lateral to C1 with a distance of 3 m to C1. EW-1E and EW-1W were in lateral to EW-1 with a distance of 3 m to EW-1. In the first test, 2,700 L of KMnO4 solution was injected into each of the three injection wells (C1, C1-E, and C1-W) with concentration of 5,000 mg/L. Three injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in those three wells dropped down to below detection limit (<0.0025 mg/L). However, no significant variations in TCE concentrations were observed in other wells. In the second test, 2,700 L of KMnO4 solution was injected into injection well (EW-1) with concentration of 5,000 mg/L. Six injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in the injection well dropped down to below detection limit (<0.0025 mg/L). TCE concentrations in (C1, C1-E, C1-W, EW-1E, EW-1W, C2, and C3) dropped to 0.35-0.49 mg/L. After injection, no significant temperature and pH variation was observed. However, increase in conductivity and oxidation-reduction potential (ORP) was observed. This indicates that the KMnO4 oxidation process is a potential method for TCE-contaminate site remediation. The groundwater conductivity increased from 500 μS/cm to 1,000 μS/cm, and ORP increased from 200 to 600 mv. Increase in KMnO4, MnO2, and total Mn was also observed in wells. Results from the slug tests show that the hydraulic conductivity remained in the range from 10-4 to 10-5 m/sec before and after the KMnO4 injection.
目次 Table of Contents
謝誌 I
摘要 III
Abstract V
目錄 IX
表目錄 XIII
圖目錄 XV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 地下水含氯溶劑化合物之污染來源 5
2.1.1 DNAPLs於地下水之傳輸特性 7
2.1.2 TCE特性及對人體之危害 11
2.2 受含氯溶劑污染之土壤及地下水整治技術 18
2.3 現地化學氧化技術分類及概述 20
2.3.1 氧化劑反應與應用特性 22
2.4 高錳酸鉀特性介紹 26
2.5 高錳酸鉀氧化機制 27
2.6 高錳酸鉀於不同酸鹼環境下之反應 29
第三章 實驗與方法 31
3.1 研究流程 31
3.2 實驗材料及設備 32
3.2.1 實驗藥品 32
3.2.2 實驗器材 33
3.3 研究方法 34
3.3.1 氧化劑去除污染物試驗 34
3.3.2 氧化劑衰減試驗 35
3.3.3 土壤SOD試驗 35
3.3.4 土壤粒徑分析 36
3.3.5 掃描式電子顯微鏡分析(scanning electron microscope, SEM) 36
3.3.6 磷酸氫二鈉對二氧化錳之抑制生成試驗 37
3.3.7 管柱試驗 38
3.4 分析方法 40
3.4.1含氯有機物 40
3.4.2 高錳酸鉀 40
3.4.3 二氧化錳 42
3.4.4 總錳 42
3.4.5 其他水質分析項目 42
3.5 場址介紹 43
3.5.1 場址地形與地勢 44
3.5.2 場址相關背景概述 48
3.5.3 地下水位及流向 50
3.6 現地前置作業 54
3.7 現地化學氧化試驗 63
3.7.1 氧化劑濃度及注藥方式 64
3.7.2 現地操作紀錄 65
3.7.3 現地氧化反應影響因子參數 66
第四章 結果與討論 67
4.1 氧化劑批次試驗 67
4.1.1 氧化劑衰減試驗 67
4.1.2 土壤氧化劑需求&#63870;試驗 70
4.1.3 磷酸氫二鈉對二氧化錳之抑制生成試驗 72
4.1.4 高錳酸鉀氧化批次試驗 75
4.2 管柱污染物去除試驗 82
4.3 管柱試驗土壤表面型態比較 85
4.4 現地試驗成效評估 88
4.4.1 反應溫度對現地氧化之影響 88
4.4.2 pH參數現地影響 89
4.4.3 導電度(EC)與氧化還原電位(ORP) 90
4.4.4 目標污染物濃度趨勢分析 94
4.4.5 地下水中高錳酸鉀與二氧化錳濃度之變化 99
4.4.6 總錳濃度變化 104
4.4.7 總有機碳、鹼度及氯離子 107
4.4.8 水力傳導係數 109
4.5 整治費用評估 111
第五章 結論與建議 113
5.1 結論 113
5.2 建議 115
參考文獻 117
參考文獻 References
王貴仁 (2002) “以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究”,逢甲大學 環境工程與科學研究所 碩士論文。
行政院環保署 (2008) “土壤及地下水受比水重非水相液體污染場址之調查、驗證作業及整治工作等技術參考手冊建置計畫”,EPA-96-GA13-02-A182。
行政院環保署 (2008) 土壤污染管制標準,環署土字第0970031435 號&#63912;。
行政院環保署 (2009) 土壤及地下水整治網,http://sgw.epa.gov.tw/public/0401.asp。
行政院環保署 (2009) 地下水污染管制標準,環署土字第0980003647 號&#63912;。
林財富、鄭仲凱 (2003) 現地化學氧化技術之發展與案例分析,第八屆土壤及地下水整治研討會論文集,第127-140頁。
張永宜 (2007) “乳化奈米級零價鐵處理水溶液中之三氯乙烯”,國立中山大學 環境工程研究所 碩士論文。
梁振儒 (2007a) “淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法”,台灣土壤及地下水環境保護協會簡訊,第二十三期,第13-20頁。
梁振儒 (2007b) “零價鐵活化過硫酸鹽氧化1,1,1-三氯乙烷”,興大工程學刊,第十八卷,第二期,第95-109頁。
梁書豪 (2006) “以Fenton-like氧化處理受燃料油污染之土壤”,國立中山大學 環境工程研究所 碩士論文。
梁敦傑 (2008) “以奈米零價鐵促進三氯乙烯厭氧生物降解”,國立中山大學 環境工程研究所 碩士論文。
郭育嘉 (2009) “以釋氧化劑物質處理受石油碳氫化合物污染之地下水”,國立中山大學 環境工程研究所 碩士論文。
陳炳宏、張欽裕、黃智及焦士榮 (2006) “高錳酸鉀氧化技術於地下水污染整治之應用”,財團法人 中興工程顧問社。
陳家洵 (2008) “地下水之染問題之探討”,Newsletter 應倫通訊 第三期 公害專題。
勞工安全衛生研究所 (2009) 物質安全資料表。
彭惠君 (2002) “高錳酸鉀對水中有機物去除機制之研究”,國立成功大學 環境工程學系 碩士論文。
曾士豪 (2009) “應用現地生物復育技術整治受三氯乙烯污染之地下水”,國立中山大學 環境工程研究所 碩士論文。
黃昆德 (2004) “利用高錳酸鉀氧化法處理三氯乙烯污染之地下水”,國立中山大學 環境工程研究所 碩士論文。
黃慧貞 (2001) “土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究”,國立中央大學 環境工程研究所 碩士論文。
經濟部工業局 (2003) “工廠土壤及地下水污染整治技術手冊”。
經濟部工業局 (2004) “土壤與地下水污染整治技術手冊-生物處理技術”。
經濟部工業局 (2007) “石油碳氫化合物土壤及地下水污染預防與整治技術手冊”。
經濟部中央地質調查所 (2009) 地質資訊調查,http://www.moeacgs.gov.tw/app/index.jsp?cat=2。
蕭文哲 (2007) “高錳酸鉀氧化TCE 程序中二氧化錳生成之動&#63882;研究”,國立成功大學 環境工程學系 碩士論文。
簡華逸 (2010) “應用現地生物整治技術去除三氯乙烯污染之地下水”,國立中山大學 環境工程研究所 博士論文。
Apelblat, A., Korin, E. and Manzurola, E. (2001) Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. The Journal of Chemical Thermodynamics, 33, 61-69.
Al, T. A., Banks, V., Loomer, D., Parker, B. L. and Mayer, K. U. (2006) Metal mobility during in situ chemical oxidation of TCE by KMnO4. Journal of Contaminant Hydrology, 88, 137-152.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M. P. and Majone, M. (2008) Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Science and Technology, 57, 921-925.
Brown, R. A., Robinson, D., Skladany, G. and Loeper, J. (2003) Response to naturally occurring organic material: permanganate versus persulfate. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil, 1692-1698, May 12-16, Gent, Belgium.
Block, P. A., Brown, R. A. and Robinson, D. (2004) Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds.
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and N. Meunier, J. F. (2006) Blais, Bioremediation of hazardous wastes-A review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
Conrad, S. H., Glass, R. J. and Peplinski, W. J. (2002) Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. Journal of Contaminant Hydrology, 58, 13-49.
Dijkshoorn, P. (2003) In-Situ chemical oxidation of chlorinated solvents withpotassium permanganate on a site in Belgium. Proceedings of ConSoil, 2003-8th International FZK/TNO Conference on Contaminated Soil,1686-1691, May 12-16, Gent, Belgium.
Dash, S., Patel, S. and Mishra, B. K. (2009) Oxidation by permanganate: synthetic and mechanistic aspects. Tetrahedron, 65, 707-739.
Donne, S. W., Hollenkamp, A. F. and Jonesa, B. C. (2010) Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. Journal of Power Sources, 195, 367-373.
Ferguson, S.H., Woinarski, A.Z., Snape, I., Morris, C.E. and Revill, A.T. (2004) A field of in situ chemical oxidation to remediate long-term diesel contaminated antarctic soil. Cold Regions Science and Technology, 40, 47-60.
Huang, K.C., Hoag G.E., Chheda, P., Woody, B. A. and Dobbs, G. M. (2001) Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. Journal of Hazardous Materials, B87, 155-169.
Huang, K.C., Couttenye, R.A. and Hoag, G. E. (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49, 413-420.
Haselow, J.S., Siegrist, R.L., Crimi, M. and Jarosch, T. (2003) Estimating the total oxidant demand for in situ chemical oxidation design. Remediation, 13, 5-16.
Hunkeler, D., Arava, R., Parker, B. L., Cherry, J. A. and Diao, X. (2003) Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: Laboratory and field studies. Environmental Science and Technology, 37, 798-804.
Henderson, T. H., Mayer, K. U., Parker, B. L. and Al, T. A. (2009) Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. Journal of Contaminant Hydrology, 106, 195-211.
Hyun, S. P. and Hayes, K. F. (2009) Feasibility of using in situ FeS precipitation for TCE degradation. Journal of Environmental Engineering, 135, 1009-1014.
ITRC (The Interstate Technology & Regulatory Council), (2005) Technical and Regulatory Guidance for In Situ Chemical Oxidation 2nd Ed.
Kelly, K.L., Marleym, M.C. and Sperry, K.L. (2002) In-situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada.
Kao, C. M., Chen, Y. L., Chen, S. C., Yeh, T. Y. and Wu, W. S. (2003b) Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Research, 37, 4885-4894.
Kang, N., Hua, I. and Rao, P. S. C. (2004) Production and characterization of encapsulated potassium permanganate for sustained release as an in situ oxidant. Industrial and Engineering Chemistry Research, 43, 5187-5193.
Kao, C. M., Chen, K. F., Chen, Y. L. and Chen. T. Y. (2004) Biobarrier system for remediation of TCE-contaminated aquifers. Bulletin of Environmental Contamination and Toxicology, 37, 87-93.
Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F. (2005) Application of monitored natural attenuation to remediate a petroleum-hydrocarbon spill site, Water Science and Technology, 53, 321-328.
Kao, C.M., Huang, K.D., Wang, J.Y., Chen, T.Y. and Chien, H.Y. (2008) Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: A laboratory and kinetics study. Journal of Hazardous Materials, 153, 919-927.
Lee, E. S., Seol, Y., Fang, Y. C. and Schwartz, F. W. (2003) Destruction efficiencies and dynamics of reaction fronts associated with permanganate oxidation of trichloroethylene. Environmental Science and Technology, 37, 2540-2546.
Li, X. D. and Schwartz, F. W. (2004) DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates. Journal of Contaminant Hydrology, 68, 269-287.
Liang, C. J., Bruell, C. J., Marley, M. C. and Sperry, K. L. (2004a) Persulfate oxidation for in situ remediation of TCE. I. Acivated by ferrous ion with and without a persulfate-thiosulfate recox couple. Chemosphere, 55, 1213-1223.
Liang, C. J., Bruell, C. J., Marley, M. C. and Sperry, K. L. (2004b) Persulfate oxidation for in situ remediation of TCE. II. Acivated by chelated ferrous ion. Chemosphere, 55, 1225-1233.
Lee, E. S., Woo, N. C., Schwartz, F. W., Lee, B. S., Lee, K. C., Woo, M. H., Kim, J. H. and Kim, H. K. (2007) Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: A pilot-scale flow-tank study. Chemosphere 71, 902-910.
Lee, B. S., Kim, J. H., Lee, K. C., Kim, Y. B., Schwartz, F. W., Lee, E. S., Woo, N. C. and Lee, M. K. (2008) Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: A large flow-tank study. Chemosphere, 74, 745-750.
Mumford, K. G., Thomson, N. R. and Allen-King, R. M. (2005) Bench-scale investigation of permanganate natural oxidant demand kinetics. Environmental Science and Technology, 39, 2835-2840.
Oesterreich, R. C. and Siegrist, R. L. (2009) Quantifying volatile organic compounds in porous media: effects of sampling method attributes, Contaminant Characteristics and Environmental Conditions. Environmental Science and Engineering, 43, 2891-2898.
Peyton, G. R. (1993) The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry, 41, 91-103.
Pant, P. and Pant, S. (2010) A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22, 116-126.
Reitsma, S. and Marshall, M. (2000) Experimental study of oxidation of pooled NAPL. In G.B. Wickramanayake et al. (ed.) Chemical oxidation and reactive barriers: Remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, OH, 25-32.
Schroth, M. H., Oostrom, M., Wietsma, T. W. and Istok, J. D. (2001) In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50, 79-98.
Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S. (2001) Principles and practices of in situ chemical oxidation using permanganate. Battelle, Columbus, OH.
Susan, P. and Monice, Z. F. (2001) Final report on the safety assessment of ammonium, potassium, and sodium persulfate. Internation Journal of Toxicology, 20, 7-21.
Siegrist, R. L., Urynowicz, M. A., Crimi, M. L. and Lowe, K. C. (2002) Genesis and effects of particles produced during in situ chemical oxidation using permanganate. Journal of Environmental Engineering, 128, 1068-1079.
Shih, Y. H. (2007) Sorption of trichloroethylene in humic acid studied by experimental investigations and molecular dynamics simulations. Soil Science Society of America Journal, 71, 1813-1821.
Tsai, T. T., Kao, C. M., Hong, A., Liang, S. H. and Chien, H. Y. (2008) Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloids and Surfaces A: Physicochemical Engineering Aspects, 322, 130-137.
Tsai, T. T., Kao, C. M., Yeh, T. Y., Liang, S. H. and Chien, H. Y. (2009) Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater. Journal of Hazardous Materials, 161, 111-119.
Tsai, T. T., Kao, C. M., Surampalli, R. Y., Weng, C. H. and Liang, S. H. (2010) Treatment of TCE-Contaminated groundwater using fenton-like oxidation activated with basic oxygen furnace slag. Journal of Environmental Engineering, 136, 288-294.
Urynowicz, M. A. and Siegrist, R. L. (2000) Chemical degradation of TCE DNAPL by permanganate. in: proceedings of the second international conference on remediation of chlorinated and recalcitrant compounds, monterey, CA, 75-82.
U.S. EPA, (2004) How to evaluate alternative cleanup technologies for underground storage tank sites-a guide for corrective action plan reviewers, U.S. EPA 510-R-04-002.
U.S. EPA, (2007) Green remediation and the use of renewable energy for remediation projects. Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
Urynowicz, M. A., Balu, B. and Udayasankar, U. (2008) Kinetics of natural oxidant demand by permanganate in aquifer solids. Journal of Contaminant Hydrology, 96, 187-194.
Waterloo Centre for Ground Water Research (1989) Dense immiscible phase contaminants in porous and fractured media. University of Waterloo Short Course, Kitchener, Onts.
Wu, Y. W., Huang, G. H., Chakma, A. and Zeng, G. M. (2005) Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221-232.
Waldemer, R. H. and Tratnyek, P. G. (2006) Kinetics of contaminant degradation by permanganate. Environmental Science and Technology, 40, 1055-1061.
Xu, X. Y. and Thomson, N. R. (2008) Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. Journal of Environmental Engineering, 134, 353-361.
Yan, Y. E. and Schwartz, F W. (2000) Kinetics and mechanisms for TCE oxidation by permanganate. Environmental Science and Technology, 34, 2535-2541.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.251.155
論文開放下載的時間是 校外不公開

Your IP address is 3.149.251.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code