Responsive image
博碩士論文 etd-0822117-155301 詳細資訊
Title page for etd-0822117-155301
論文名稱
Title
應用於起立輔助之軸向磁通磁齒輪電機結構設計
Design of an Axial Flux Magnetic-geared Motor for Standing-up Assistance
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-14
繳交日期
Date of Submission
2017-09-22
關鍵字
Keywords
有限元素分析方法、輔助站立裝置、Z方向傳遞磁通之磁齒輪馬達、虛擬功法、磁齒輪、等效磁路模型
magnetic equivalent circuit, virtual work method, finite element method, stand-up assistance, Axial flux magnetic-geared motor
統計
Statistics
本論文已被瀏覽 5679 次,被下載 20
The thesis/dissertation has been browsed 5679 times, has been downloaded 20 times.
中文摘要
此論文介紹一種具有Z方向磁通量的磁齒輪減速電動機的設計步驟,應用於輔助年長者起立與坐下。該電機為雙轉子結構,兩個旋轉方向相反的轉子皆有著Z方向的永磁,通過鐵軛產生磁耦合。藉由等效磁路模型計算電機的輸出轉矩和齒輪組的扭力矩,在應用尺寸的限制下找到該輸出轉矩與扭矩的交點來選取初始設計尺寸,接著使用三維有限元分析來驗證該初始設計,並在不同操作條件下做模擬測試,相應地進行修改,找出最佳尺寸。
Abstract
The design procedure for a magnetic geared motor with axial flux to assist the sit-to-stand motion of elderly adults is presented in this paper. The machine uses two rotors rotating in opposite directions, and each consists on axially magnetized permanent magnets and are magnetically coupled through an iron yoke. The magnetic equivalent circuit modelling is used to calculate both the output torque of the motor set and the pull-put torque of the gear set. The dimensions for an initial design was determined by finding the intersection of these torques within the size constraint of the application. A 3-dimensional finite element analysis was used to validate this initial design and machines with similar dimensions were compared according to their pull-out torque and maximum load torque supported. The final design was tested under the simulated load conditions for a standing-up motion and proved capable of aiding a person in standing up.
目次 Table of Contents
THESIS VALIDATION LETTERS ................................................... i
ACKNOWLEDGEMENT .............................................................. iii
摘 要 ........................................................................................... iv
ABSTRACT ................................................................................... v
TABLE OF CONTENTS ............................................................... vi
LIST OF FIGURES ..................................................................... viii
LIST OF TABLES .......................................................................... x
LIST OF SYMBOLS ..................................................................... xi
CHAPTER 1 INTRODUCTION .................................................... 1
1.1 Background ............................................................................. 1
1.2 Objectives ............................................................................... 2
1.3 Literature review ..................................................................... 2
1.4 Magnetic gears ....................................................................... 4
1.5 Thesis outline ......................................................................... 7
CHAPTER 2 DEVICE DESCRIPTION AND MOTOR SET ......... 8
2.1 The axial-flux magnetic-geared motor ................................... 8
2.2 Physical dimensions and input circuit .................................... 9
2.3 Output torque calculation ..................................................... 11
2.4 Output torque for multiple dimensions ................................. 16
CHAPTER 3 GEAR SET ........................................................... 21
3.1 Dimensions .......................................................................... 21
3.2 Pull-out torque calculation ................................................... 21
3.3 Case 1: Fixed HPM and rotating LPM ................................. 24
3.4 Case 2: Fixed LPM and rotating HPM ................................. 28
3.5 Torque ratio .......................................................................... 30
3.6 Pull-out torque for multiple dimensions ................................ 31
CHAPTER 4 SYSTEM SETUP AND VALIDATION .................. 34
4.1 Assembly considerations ..................................................... 34
4.2 Curves intersection .............................................................. 34
4.3 Numerical validation ............................................................ 36
4.4 Magnetic saturation in iron parts ......................................... 36
4.5 Pull-out torques ................................................................... 41
4.6 Maximum constant load simulation...................................... 44
4.7 Standing-up load simulation ................................................ 47
CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS ... 50
REFERENCES .......................................................................... 52
參考文獻 References
[1] M. K. Y. Mak, O. Levin, J. Mizrahi, and C. W. Y. Hui-Chan, “Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease," Clin. Biomech., vol. 18, no. 3, pp. 197-206, Mar. 2003.

[2] L. A. C. Arevalo, P. J. G. Medina, and P. F. U. Ortiz, “Analysis of torque and power supported by the hip during a change of sitting position to standing and walking cycle,” Proc. 2014 RAS/EMBS, IEEE Int. Conf., pp. 473-478, Sao Paulo, Aug. 2014.

[3] M. K. Shepherd and E. J. Rouse, “Design and validation of a torque-controllable actuator for knee assistance during sit-to-stand,” Proc. 2016 EMBC, IEEE Int. Conf., pp. 2228-2231, Orlando, FL, Aug. 2016.

[4] K. Tanghe et al., “Predicting seat-off and detecting start-of-assistance events for assisting sit-to-stand with an exoskeleton,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 792-799, Jul. 2016.

[5] J. Chen and W.-H. Liao, “Experimental evaluation of an assistive knee brace with magnetorheological actuator,” Proc. 2010 ROBIO, IEEE Int. Conf., pp. 1238-1243, Tianjin, Dec. 2010.

[6] S. Murata et al., “Relationship between the 10-second chair stand test (Frail CS-10) and physical function among the frail elderly,” Physiotherapy Science, vol. 25 no. 3, pp. 431-435, Jul. 2010.

[7] R. Kubo, S. Okamoto, S. Nezaki, N. Yamada, Y. Akiyama, and Y. Yamada, “Patient simulator using wearable robot: Representation of invariant sitting-down and standing-up motions of patients with knee-OA,” Proc. 2015 IECON, pp. 004808-004813, Yokohama, Nov. 2015.

[8] E. Kobayashi, T. Yoshimi, N. Matsuhira, M. Mizukawa, and Y. Ando, “A study of driving trajectory for standing-up motion support system,” Proc. 2015 ASCC, pp. 1-5, Kota Kinabalu, May 2015.

[9] C.-T. Liu, H.-Y. Chung, and C.-C. Huang, “Design assessment of a magnetic-geared double-rotor permanent magnet generator,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014.

[10] Y. Chen, W. N. Fu, S. L. Ho, and H. Liu, “A quantitative comparison analysis of radial-flux, transverse-flux, and axial-flux magnetic gears,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1-4, Nov. 2014.

[11] A. P. Ferreira, A. V. Leite, and A. F. Costa, “Comprehensive analysis and evaluation of cogging torque in axial flux permanent magnet machines,” Proc. 2015 SDEMPED, IEEE Int. Symp., pp. 435-440, Guarda, Sept. 2015.

[12] M.-C. Tsai and L.-H. Ku, “3-D printing-based design of axial flux magnetic gear for high torque density,” IEEE Trans. Magn., vol. 51, no. 11, pp. 8002704 (1-4), Nov. 2015.

[13] R. C. Holehouse, K. Atallah, and J. Wang, “A linear magnetic gear,” Proc. 2012 ICEM, IEEE Int. Conf., pp. 563-569, Marseille, Sept. 2012.

[14] C.-T. Liu, Y.-W. Chiu, and C.-C. Hwang, “Designs and feasibility assessments of an integrated linear electromagnetic actuator for cold roll mill applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2693-2699, May 2016.

[15] M. Aoyama, Y. Kubota, and T. Noguchi, “Proposal of self-excited wound-field magnetic geared motor for HEV application,” Proc. 2015 ECCE, IEEE Int. Conf., pp. 1390-1397, Montreal, QC, Sept. 2015.

[16] Y. Du et al., “Comparison of flux-switching PM motors with different winding configurations using magnetic gearing principle,” IEEE Trans. Magn., vol. 52, no. 5, pp. 1-8, May 2016.

[17] N.-W. Liu, Design Assessment of an Outer Annular-arranged Axially-coupled Magnetic-geared Motor for Mobile Assistive Devices, M. S. thesis, National Sun Yat-sen University, Kaohsiung, Taiwan R. O. C., Jul. 2016.

[18] J. Pyrhonen, T. Jokinen, and V. Hrabovcova, Design of Rotating Electrical Machines, 1st Ed., Wiley, West Sussex, U. K., ISBN: 978-0-470-74008-8, Feb. 2009.
[19] C. R. Nave, “Magnetic Properties of Ferromagnetic Materials”, Georgia State University. Retrieved on Dec. 2013 from:
http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/magprop.html#c2

[20] C.-T. Liu, K.-Y. Hung, and C.-C. Hwang, “Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines,” IEEE Trans. Magn., vol. 52, no. 7, pp. 8202404 (1-4), Jul. 2016.

[21] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, 1st Ed., CRC Press, Florida, ISBN: 978-1-4200-4164-4, Jun. 2001.

[22] P. Krause, O. Wasynczuk, S. Sudhoff, and S. Pekarek, Analysis of Electric Machinery and Drive Systems, 3rd Ed., Wiley-IEEE Press, Hoboken, NJ, U.S.A., ISBN: 978-1-118-02429-4, Jun. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code