Responsive image
博碩士論文 etd-0823106-135022 詳細資訊
Title page for etd-0823106-135022
論文名稱
Title
彈液動潤滑理論應用於化學機械研磨模擬
Application of Elastohydrodynamic Lubrication to simulation of Chemical Mechanical Polishing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-22
繳交日期
Date of Submission
2006-08-23
關鍵字
Keywords
彈液動潤滑、化學機械研磨
Chemical Mechanical Polishing, Elastohydrodynamic Lubrication
統計
Statistics
本論文已被瀏覽 5651 次,被下載 21
The thesis/dissertation has been browsed 5651 times, has been downloaded 21 times.
中文摘要
摘 要
本研究目的為利用彈液動潤滑理論模擬化學機械研磨(CMP),進行分析流體壓力,其中整合了微觀尺度的峰端接觸與巨觀的流體壓力。使用經修正的雷諾方程式來描述流場,以及統計學觀念導出的平均接觸壓力公式,用來表示峰端固體接觸壓力,還有墊片基材彈性變形公式,進行建構CMP模型,最後進行討論各參數對流體壓力之影響。
其結果發現當轉速或負載壓力增大時,流體負壓力會越小,形成更大的峰端接觸壓力以支撐負荷,摩擦力也變大,晶圓傾斜角度也因此越大,流體壓力值與負載同一數量級,流體壓力的會明顯地改變接觸應力之分佈。出現負壓力是因為墊片基材的變形,當接觸壓力增大或傾斜角度減小時,可發現流體壓力會越小。材料移除模型假設峰端為彈性變形,接觸壓力可以依虎克定律得到,磨粒穿透晶圓表面的深度可由晶圓與墊片達力平衡時獲得,其結果顯示當磨粒粒徑增加時,移除率下降,原因可能是磨粒與被加工物表面接觸面積的減少所引起之現象。

關鍵字:彈液動潤滑、化學機械研磨
Abstract
Abstract
This paper proposes a model that integrates the microscale asperity contact and macroscale elastohydrodynamic lubrication (EHL) to simulate the pressure distribution in the chemical mechanical planarization (CMP). This model involves modified Reynolds equation used to describe the status of fluid field, the equation of the average asperity contact pressure by using statistics for solid contact pressure due to asperity contact, and the equation of the elastic pad deformation in bulk. Results show that with increasing relative velocity or load, the magnitude of the sub-ambient pressure decreases, the greater asperity contact pressure is formed to support the load, and the friction force also increases to cause the greater rotation angles. The magnitude of the fluid pressure is of the same order of magnitude as the applied normal load. Therefore, the addition of this fluid pressure may significantly change the distribution of the contact stress. The reason of the sub-ambient pressure existed is the deformation of the pad. In the material removal rate model, the elastic deformation of asperities is assumed, and the contact pressure is determined by Hooke’s law. The indentation depth can be obtained from the force balance imposed on the particles by the wafer and the pad. Results show that the material removal rate decreases with increasing abrasive size, due to the increasing contact area between the abrasive and wafer.

Keywords:Elastohydrodynamic Lubrication, Chemical Mechanical Polishing
目次 Table of Contents
總 目 錄
總目錄 .................................................. i
圖目錄 ................................................. iv
表目錄 ................................................. ix
符號說明 ................................................ x
中文摘要 ............................................... xv
英文摘要 .............................................. xvi
第一章 緒論 ........................................... 1
1.1 前言................................................ 1
1.2 研究動機............................................ 2
1.3 文獻回顧............................................ 3
1.3.1 固體-固體接觸的CMP模型........................... 4
1.3.2 固體-流體-固體接觸的CMP模型...................... 5
1.3.3 半固體-固體接觸的CMP模型......................... 6
1.4 研究動機............................................ 9
1.5 論文架構........................................... 10
第二章 CMP模型之建立.................................... 16
2.1 發展方向........................................... 16
2.2 理論推導過程....................................... 17
2.3 彈液動潤滑之雷諾方程式............................. 18
2.4 峰端平均接觸壓力................................... 22
2.5 墊片基材之變形量...................................................... 23
2.5.1 Winkler elastic model.......................... 23
2.5.2 平面應變........................................ 23
2.6 流體厚度方程式..................................... 25
2.7 雷諾方程式、流體厚度方程式的離散化................. 26
2.7.1 無因次化........................................ 26
2.7.2 離散化.......................................... 27
2.7.2.1 一般格點位置離散化.......................... 27
2.7.2.2 上邊界格點位置的離散化...................... 29
2.7.2.3 左下邊界格點位置的離散化.................... 30
2.7.2.4 右下邊界格點位置的離散化.................... 31
2.8 力與力矩平衡....................................... 32
2.9 數值模擬隨機表面................................... 33
2.9.1 隨機表面的概念.................................. 33
2.9.2 數學推導........................................ 33
2.10 材料移除率........................................ 35
2.10.1 有效磨粒總數................................... 36
2.10.2 單顆磨粒移除率................................. 36
第三章 結果與討論....................................... 50
3.1 CMP模型............................................ 50
3.1.1 速度對流體壓力之影響............................ 57
3.1.2 負載對流體壓力之影響............................ 61
3.1.3 黏度對流體壓力之影響............................ 65
3.2 數值模擬隨機表面................................... 69
3.2.1 高斯隨機表面.................................... 71
3.2.2 不同方向的表面粗度對流體壓力之影響.............. 80
3.2.3 負載對流體壓力之影響............................ 83
3.3 材料移除模型....................................... 88
第四章 結論............................................. 92
參考文獻................................................ 95
參考文獻 References
參 考 文 獻
[1] F. Preston, “The theory and design of plate glass polishing machines”, Journal of the Society of Glass Technology, 11, (1927) 214-256.
[2] H. Hocheng, H. Y. Tsai and M. S. Tsai, “Effect of kinematic variables on nonuniformity in chemical mechanical planarization”, International Journal of Machine Tools & Manufacture, 40, (2000) 1651-1669.
[3] D. Wang D, J. Lee, K. Holland, T. Bibby, Beaudoin S and T. Cale, “Von Mises stress in chemical-mechanical polishing processes”, Journal of the Electrochemical Society, 144, 3, (1997) 1121-1127,.
[4] W. T. Tseng, Y. H. Wang and J. H. Chin, “Effects of film stress on the chemical mechanical polishing process”, Journal of the Electrochemical Society, 146, 11, (1999) 4273-4280.
[5] Fu and A. Chandra, “A model for wafer scale variation of removal rate in chemical mechanical polishing based on elastic pad deformation”, Journal of the Electronic Materials, 30, 4, (2001) 400-408.
[6] Fu and A. Chandra, “A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelastic pad deformation”, Journal of Electronic Materials, 31, 10, (2002) 1066-1073.
[7] D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, W. N. Gill, “Pad porosity, compressibility and slurry delivery effects in chemical-mechanical planarization: modeling and experiments”, Thin Solid Films, 366, 1-2, (2000) 181-190.
[8] D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, W. N. Gill, “Three-dimensional chemical mechanical planarization slurry flow model based on lubrication theory”, Journal of The Electrochemical Society, 148, 4, (2001) G207-G214.
[9] D. G. Thakurta, D. W. Schwendeman, R. J. Gutmann, S. Shankar, L. Jiang, W. N. Gill, “Three-dimensional wafer-scale copper chemical-mechanical planarization model”, Thin Solid Films, 414, 1, (2002) 78-90.
[10] J. Tichy, J. A. Levert, L. Shan and S. Danyluk, “Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing”, Journal of the Electrochemical Society, 146, 4, (1999) 1523-1528.
[11] L. Shan, J.A. Levert, L. Meade, J. Tichy, S. Danyluk, “Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing”, Journal of Tribology, 122, 3, (2000) 539-543.
[12] J.A. Levert, S. Danyluk, J. Tichy, “Interfacial pressure while polishing with liquids”, Transactions of The ASME, 122, (2000) 450-457.
[13] Y. R. Jeng and H. J. Tsai, “Tribological analysis on powder slurry in chemical mechanical polishing”, Journal of Physics D: Applied Physics. D, 35, 13, (2002) 1585-1591.
[14] K. Haff, “Grain flow as a fluid-mechanical phenomenon”, Journal of Fluid Mechanics, 134, (1983) 401-430.
[15] Y. R. Jeng and H. J. Tsai, “Improved model of wafer/pad powder slurry for CMP”, Journal of the Electrochemical Society, 150, 6, (2003) G348-G354.
[16] H. Hocheng and C. Y. Cheng, “Visualized characterization of slurry film between wafer and pad during chemical mechanical planarization”, IEEE Transactions on Semiconductor Manufacturing, 15, 1, (2002) 45-50.
[17] C. H. Zhou, L. Shan, J. R. Hight, S. H. Ng, and S. Danyluk, “Fluid pressure and its effects on chemical mechanical polishing”, Wear, 253, 3-4, (2002) 430-437.
[18] J. F. Lin, J. D. Chern, Y. H. Chang, P. L. Kuo, and M. S. Tsai, “Analysis of the tribological mechanisms arising in the chemical mechanical polishing of copper-film wafers”, Journal of Tribology, 126, 1, (2004) 185-199.
[19] A. Kim, J. Seok, J. Tichy, and T. S. Cale, “Soft elastohydrodynamic lubrication with roughness”, Journal of Tribology, 125, 2, (2003) 448-451.
[20] A. Kim, J. Seok, J. Tichy, and T. S. Cale, “A Multiscale Elastohydrodynamic Contact Model for CMP”, Journal of the Electrochemical Society, 150, 9, (2003) G570-G576.
[21] J. Seok, A. Kim, C. Sukam, A. Jindal, J. Tichy, R. Gutmann, and T. S. Cale, “Inverse analysis of material removal data using a multiscale CMP model”, Microelectronic Engineering, 70, 2-4, (2003) 478-488.
[22] J. Seok, C. Sukam, A. Kim, J. Tichy, and T. S. Cale, “Multiscale material removal modeling of chemical mechanical polishing”, Wear, 254, 3-4, (2003) 307-320.
[23] S. H. Ng, J. R. Hight, C. H. Zhou, I. Yoon, and S. Danyluk, “Pad soaking effect on interfacial fluid pressure measurements during CMP”, Journal of Tribology, 125, 3, 5(2003) 82-586.
[24] J. Lu, C. Rogers, V. Manno, A. Philipossian, S. Anjur, and M. Moinpour, “Measurements of Slurry Film Thickness and Wafer Drag during CMP”, Journal of the Electrochemical Society, 151, 4, (2004) G241-G247.
[25] C. F. Higgs III, S. H. Ng, L. Borucki, I. Yoon, and S. Danyluk, “A mixed-lubrication approach to predicting CMP fluid pressure modeling and experiments”, Journal of the Electrochemical Society, 152, 3, (2005) G193-G198.
[26] K. L. Johnson, Contact Mechanics, 104-105, Cambridge University Press, Cambridge, U.K. (1985)
[27] S. H. Ng, C. F. Higgs III, I. Yoon, and S. Danyluk, “An analysis of mixed lubrication in chemical mechanical polishing”, Journal of Tribology, 127, 2, (2005) 287-292.
[28] S. H. Ng, L. Borucki, C. F. Higgs III, I. Yoon, A. Osorno and, S. Danyluk, “Tilt and interfacial fluid pressure measurements of a disk sliding on a polymeric pad”, Journal of Tribology, 127, 1, (2005) 198-205.
[29] L. Borucki, S. H. Ng, I. Yoon and, S. Danyluk, “Fluid pressures and pad topography in chemical mechanical polishing”, Journal of the Electrochemical Society, 152, 5, (2005) G391-G397.
[30] J. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling”, IEEE Transaction: Semiconductor Manufacturing, 14, 2, (2001) 112-133.
[31] W. Choi, J. Abiade, S. M. Lee, R. K. Singh, “Effects of slurry particles on silicon dioxide CMP”, Journal of the Electrochemical Society, 151, 8, (2004) G512-G522.
[32] M. Bielmann, U. Mahajan, and R. K. Singh, “Effect of particle size
during tungsten chemical mechanical polishing”, Electrochemical and Solid-State Letters, 2, (1999) 401-403.
[33] X. Jin, L. M. Keer, Q. Wang, “A 3D EHL simulation of CMP: Theoretical framework of modeling”, Journal of the Electrochemical Society, 152, 1, ( 2005) G7-G15.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.61.16
論文開放下載的時間是 校外不公開

Your IP address is 18.218.61.16
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code