Responsive image
博碩士論文 etd-0823106-155936 詳細資訊
Title page for etd-0823106-155936
論文名稱
Title
直排輪溜冰曲棍球選手之膝關節振動訊號分析
Analysis of Knee Joint Vibration Signal Acquired from In-line Skating Hockey Players
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-10
繳交日期
Date of Submission
2006-08-23
關鍵字
Keywords
振動訊號、均方根值、膝關節、短時傅立葉轉換
RMS, signal, knee joint, STFT, vibration
統計
Statistics
本論文已被瀏覽 5678 次,被下載 0
The thesis/dissertation has been browsed 5678 times, has been downloaded 0 times.
中文摘要
膝關節為人體重要的關節之一,其健康重要性是無庸置疑的,而臨床的膝關節診斷可簡單區分為侵入性及非侵入性。本研究即在膝關節髕骨處之皮膚表面,採用非侵入性之振動訊號量測,透過短時傅立葉轉換及均方根值的計算,再經由變異數分析的結果,驗証所用之分析方法是否符合醫師所診斷之結果。
直排輪運動可以增加人體肌肉以及各部位機能的協調性,在國立中山大學裡,亦有同學參與直排輪溜冰運動這個項目,當中不乏國手級的選手。本研究即是針對這些直排輪溜冰選手進行膝關節訊號量測與分析,由膝關節訊號中,區分其健康程度及分析出其差異性。
研究結果可知,膝關節有韌帶方面之異常者,頻率會超過50 Hz,而健康者之頻率則分佈於10 Hz以下。未來期待能針對不同訓練時間和年紀之溜冰選手,建立一套完整的膝關節振動訊號資料庫。
Abstract
The knee joint is the most commonly injured joint in the body. Clinical methods used at present for the diagnosis of cartilage pathology in the knee are invasive in nature. Analysis of vibration signals emitted by the knee joint has the potential for the development of a non-invasive procedure for the diagnosis of knee pathology. By Short Time Fourier Transform (STFT) and calculating root mean square (RMS) value, via One Way ANOVA at last, to demonstrate whether the two analysis methods are valid in this work.
The method was tested on 14 male volunteers from NSYSU (7 players of in-line skating and 7 normal schoolmates). By analyzing the signals extracted from the players, finding difference of them, and distinguishing whether they are healthy.
In conclusion, if the knee joint ligament is unusual, the frequency of signal is higher than 50 Hz; if not, the frequency is lower than 10 Hz. On the other hand, the RMS value of signal has no distinct region among the testers, so could not be used to analyze the signals. The results should be able to take as the reference for the diagnosis of knee joint non-invasively in clinical medicine.
目次 Table of Contents
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VII
第一章 前言 1
1.1研究主題 1
1.2文獻回顧 4
1.3研究目的 10
1.4章節說明 12
第二章 基本理論 15
2.1膝關節於擺動下所產生的振動訊號 15
2.2膝關節振動訊號處理方法 17
2.2.1短時傅立葉轉換(STFT) 18
2.2.2均方根值(Root Mean Square, RMS) 21
2.2.3單方變異數分析(One Way ANOVA) 22
第三章 實驗方法與步驟 25
3.1研究對象 25
3.2實驗儀器 27
3.3實驗步驟 30
第四章 實驗結果與討論 40
4.1儀器重複性之驗證 40
4.2實驗結果之討論 41
4.2.1短時傅立葉轉換 42
4.2.2均方根值 45
4.2.3單方變異數分析 46
第五章 綜合討論與未來方向 67
5.1綜合討論 67
5.2建議與未來方向 69
參考文獻 70
附錄A:膝關節之解說與解剖構造圖 74
參考文獻 References
1. K.L. Moore, Clinically Oriented Anatomy. Baltimore, MD: Williams/Wilkins, 1984.
2. R.W. Jackson, and I. Abe, “The Role of Arthroscopy in the Management of Disorders of the Knee : An Analysis of 200 Consecutive Examinations,” J. Bone Surg. (Brit.), 54-B, pp. 310-322, 1972.
3. S. Tavathia, R.M. Rangayyan, C.B. Frank, G.D. Bell, K.O. Ladly, and Y.T. Zhang, “Analysis of Knee Vibration Signals Using Linear Prediction,” IEEE Trans. Biomed. Eng., 39(9), pp. 959-970, 1992.
4. K.H. Erb, “Uber die Moeglichkeit der Registrierung von Gelenkgeraeuschen,” Deutsche Z. Chir., 241, pp. 237-245, 1933.
5. A. Steindler, “Auscultation of Joints,” J. Bone Joint Surg., 19, pp. 121-124, 1937.
6. A. Peylan, “Direct Auscultation of the Joints (Preliminary Clinical Observations),” Rheumatism, 9, pp. 77-81, 1953.
7. H. Fischer, and E.W. Johnston, “Analysis of Sounds from Normal and Pathologic Knee Joints,” 3rd Int. Congr. Phys. Med., pp. 50-57, 1960.
8. M.L. Chu, I.A. Gradisar, M.R. Railey, and G.F. Bowling, “Detection of Knee Joint Diseases Using Acoustical Pattern Recognition Technique,” J. Biomechan. , 9, pp. 111-114, 1976.
9. M.L. Chu, I.A. Gradisar, M.R. Railey, and G.F. Bowling, “An Electroacoustical Technique for the Detection of Knee Joint Noise,” Med. Res. Eng., 12(1), pp. 18-20, 1976.
10. M.L. Chu, I.A. Gradisar, L.D. Zavodney, and G.F. Bowling, “Computer Aided Acoustical Correlation of Pathological Cartilage Generated Noise,” 30th Ann. Conf. Eng. Med. Biol., Los Angeles, CA, USA, p. 175, 1977.
11. M.L. Chu, I.A. Gradisar, and R. Mostardi, “A Noninvasive Electroacoustical Evaluation Technique of Cartilage Damage in Pathological Knee Joints,” Med. Biol. Eng. Comput., 16, pp. 437-442, 1978.
12. R.A.B. Mollan, G.C. McCullagh, and R.I. Willson, “A Critical Appraisal of Auscultation of Human Joints,” Clin. Orthopaedic. Related Res., 170, pp. 231-237, 1982. 13. W. G. Kernohan, and R. A. B. Mollan, “Microcomputer Analysis of Joint Vibration,” J. Microcomputer Appl., 5, pp.287-296, 1982.
14. G.W. Kernohan, D.E. Beverland, G.F. McCoy, S.N. Shaw, R.G.H. Wallace, G.C. McCullagh, and R.A.B. Mollan, “The Diagnostic 70 Potential of Vibration Arthrography,” Clin. Orthopaedic. Related Res., pp.106-112, 1986.
15. D.E. Beverland, G.F. McCoy, W.G. Kernohan, and R.A.B. Mollan, “What is Patellofemoral Crepitus?,” J. Bone Joint Surg., 68-B, p. 496, 1986.
16. G.F. McCoy, J.D. McCrea, D.E. Beverland, W.G. Kernohan, and R.A.B. Mollan, “Vibration Arthrography as a Diagnostic Aid in Diseases of the Knee,” J. Bone Joint Surg., 68-B(2), pp. 288-293, 1987.
17. G.F. McCoy, D.E. Beverland, W.G. Kernohan, A. Agahi, and R.A.B. Mollan, “Vibration Arthrography in Knee Joint Diseases,” 8th Combined Meeting Orthopaedic Associations of the English-speaking World, The American Orthopaedic Association, Washington, DC, USA, paper no. 8, 1987.
18. G.W. Kernohan, D.E. Beverland, G.F. McCoy, A. Hamilton, P. Watson, and R.A.B. Mollan, “Vibration Arthrometry,” Acta. Orthop. Scand., pp. 70-79, 1990.
19. W. Mang, M. Birk, and G. Blumel, “Practical Application of Phonoarthrography in the Diagnosis of Knee Joint Diseases,” Z. Orthop., 118(1), pp. 85-90, 1980.
20. J. Inoue, Y. Nagata, and K. Suzuki, “Measurement of Knee Joint Sounds by Microphone,” Sangyo Ika Daigaku Zasshi, 8(3), pp. 307-316, 1986.
21. Y. Nagata, K. Suzuki, Y. Kobayashi, J. Inoue, and H. Takyu, “Joint-sounds – Clinical Experience of the Knee Joint,” Sangyo Ika Daigaku Zasshi, 8, suppl. pp. 425-428, 1986.
22. Y.T. Zhang, K.O. Ladly, R.M. Rangayyan, C.B. Frank, and G.D. Bell, “Muscle Contraction Interference in Acceleration Vibroarthrography, ” Proc. 12th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Philadelphia, PA, USA, pp. 2150-2151, 1990.
23. Y.T. Zhang, K.O. Ladly, Z.Q. Liu, S. Tavathia, R.M. Rangayyan, C.B. Frank, and G.D. Bell, “Interference in Displacement Vibroarthrography and its Adaptive Cancellation,” Proc. Canadian Med. Biol. Eng. Soc. Conf., Winnipeg, Canada, pp. 107-108, 1990.
24. Z.Q. Liu, Y.T. Zhang, K.O. Ladly, C.B. Frank, R.M. Rangayyan, and G.D. Bell, “Reduction of Interference in Knee Sound Signals by Adaptive Filtering,” Proc.3rd IEEE Symposium on Computer-Based Medical Systems, Chapel Hill, NC, USA, pp. 389-396, 1990.
25. Y.T. Zhang, R.M. Rangayyan, C.B. Frank, G.D. Bell, K.O. Ladly, and Z.O. Liu, “Classification of Knee Sound Signals Using Neural Networks: A Preliminary Study,” IASTED Int. Conf. Express Systems Neural Networks, Hawaii, USA, pp.60-62, 1990.
71
26. S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, “Time-Frequency Signal Feature Extraction And Screening Of Knee Joint Vibroarthrographic Signals Using The Matching Pursuit Method” Proc.19th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Chicago, IL. 1997.
27. S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, “Adaptive Time-Frequency Analysis of Knee Joint Vibroarthrographic Signals for Noninvasive Screening of Articular Cartilage Pathology,” IEEE Trans. Biomed. Eng., 47(6), pp. 773-783, 2000.
28. L. Yu, V. Giurgiutiu, “Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors,” SMART STRUCTURES AND SYSTEMS, 1(2), pp.185-215, 2005.
29. Y.M. Wang, Y.H. Kang, X.J. Wu, “Application of STFT and HOS to analyse magnetostrictively generated pulse-echo signals of a steel pipe defect,” NDT & E INTERNATIONAL, 39(4), pp. 289-292, 2006.
30. S. Chikkerur, V. Govindaraju, A.N. Cartwright, “Fingerprint image enhancement using STFT analysis,” Lecture notes in computer science, 3687, pp. 20-29, 2005. 31. C. Heneghan, S.M. Khanna, A. Flock, M. Ulfendahl, L. Brundin, and M.C. Teich, “Investigating the Nonlinear Dynamics of Cellular Motion in the Inner Ear Using the Short-Time Fourier and Continuous Wavelet Transforms,” IEEE Transactions on Signal Processing, 42(12), pp. 3335-3352, 1994.
32. S. Tavathia, R.M. Rangayyan, C.B. Frank, G.D. Bell, K.O. Ladly, and Y.T. Zhang, “Analysis of Knee Vibration Signals Using Linear Prediction,” IEEE Trans. Biomed. Eng., 39, pp. 959-970, 1992.
33. Z.M.K. Moussavi, R.M. Rangayyan, G.D. Bell, C.B. Frank, K.O. Ladly, and Y.T. Zhang, “ Screening of Vibroarthrographic Signals via Adaptive Segmentation and Linear Prediction Modeling,” IEEE Trans. Biomed. Eng., 43, pp. 15-23, 1996.
34. S. Krishnan, R.M. Rangayyan, G.D. Bell, C.B. Frank, and K.O. Ladly, “Recursive Least Squares-lattice Based Adaptive Segmentation, and Autoregressive Modeling of Nonstationary Vibroarthrography Signals,” Proc. Canadian Conf. Electrical and Computer Engineering, Calgary, Alta., Canada, pp. 339-342, 1996.
35. C.B. Frank, R.M. Rangayyan, and G.D. Bell, “Analysis of Knee Joint Sound Signals for Non-invasive Diagnosis of Cartilage Pathology,” IEEE Eng. Med. Biol. Mag., pp. 65-68, 1990.
36. Y.T. Zhang, C.B. Frank, R.M. Rangayyan, and G.D. Bell, “Mathematical Modeling and Spectrum Analysis of the Physiological Patello-femoral Pulse Train Produced by Slow Knee Movement,” IEEE Trans. Biomed. Eng., 39(9), pp. 971-979, 1992.
72
37. Y.T. Zhang, R.M. Rangayyan, C.B. Frank, and G.D. Bell, “Adaptive Cancellation of Muscle Contraction Interference from Knee Joint Vibration Signals,” IEEE Trans. Biomed. Eng., 41(2), pp.181-191, 1994.
38. R.M. Rangayyan, S. Krishnan, G.D. Bell, C.B. Frank, and K.O. Ladly, “Impact on Muscle Contraction Interference Cancellation on Vibroarthrographic Screening,” Proc. Int. Conf. Biomed. Eng., Kowloon, Hong Kong, pp.16-19, 1996.
39. R.M. Rangayyan, S. Krishnan, G.D. Bell, C.B. Frank, and K.O. Ladly, “Parametric Representation and Screening of Knee Joint Vibroarthrographic Signals, ” IEEE Trans. Biomed. Eng., 44(11), pp.1068-1074, 1997.
40. C.C. Jiang, J.H. Lee, and T.T. Yuan, “Vibration Arthrometry in the Patients with Failed Total Knee Replacement,” IEEE Trans. Biomed. Eng., 47(2), pp.219-227, 2000.
41. 劉益瑞,關節振動描記術-退化性膝關節炎的訊號分析與機轉,中原大學醫學工程研究所碩士論文,1994。
42. 蓋隆祥,髕骨振動訊號之數學模式,國立臺灣大學電信工程研究所碩士論文,1999。
43. 蔡佩勳,以模學模型技術應用於膝關節振動訊號分析,國立臺灣大學電信工程學研究所,2002。
44. 羅勇軍,前十字韌帶重建術後膝部異常振動信號之數學模式與頻譜分析,國立臺灣大學電機工程學研究所碩士論文,2003。
45. 李峰誌,以數學模型應用於舉重選手之膝關振動信號分析,國立臺灣大學電信工程研究所碩士論文,2004。
46. S.G. Wannamethee, A.G. Shaper, Walker M, Changes in physical activity, mortality, and incidence of coronary heart disease in older men. pp.1603-1608, Lancet, 1998. 47. 陳金山、徐淑媛等編譯,Netter’s 人體解剖學圖譜,合記圖書出版社,台北,2002。
48. 邱美妙、彭淑婷等編譯,Grant’s 彩色解剖圖譜,合記圖書出版社,台北,2005。
49. F.H. Gunston, “POLYCENTRIC KNEE ARTHROPLASTY: Prosthetic Simulation of Normal Knee Movement,” J. Bone Surg. (Brit.), 53-B, pp. 272-277, 1971.
50. R.M. Rangayyan, C.B. Frank, G.D. Bell, and R. Smith, “Analysis of Knee Joint Sound Signals,” in Proc. IEEE Eng. Med. Biol. Soc. 10th Ann. Int. Conf., New Orleans, USA, pp.712-713, 1988.
51. 王蒙編輯,MATLAB 7 輔助信號處理技術與應用,頁 348-350,電子工業出版社,北京,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.12.242
論文開放下載的時間是 校外不公開

Your IP address is 3.145.12.242
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code