Responsive image
博碩士論文 etd-0823107-174428 詳細資訊
Title page for etd-0823107-174428
論文名稱
Title
烏山頂泥火山之細菌多樣性分析與研究
Analysis of the bacterial diversity in the Wu-Shan-Ding mud volcano areas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-13
繳交日期
Date of Submission
2007-08-23
關鍵字
Keywords
烏山頂、泥火山、變性梯度膠體電泳
mud volcano, DGGE
統計
Statistics
本論文已被瀏覽 5763 次,被下載 4330
The thesis/dissertation has been browsed 5763 times, has been downloaded 4330 times.
中文摘要
本研究是針對烏山頂泥火山特殊地質中的土壤,做微生物多樣性的分析與研究;另一方面,透過培養的方式,分離可能存在泥火山泥
漿中的甲烷利用菌。其中主要利用的技術有Polymerase chain reaction (PCR)與Denaturing gradient gel electrophoresis (DGGE),並以微生物的16S rRNA gene為標的來研究泥火山周圍的微生物菌相分佈與多樣性。最後透過PCR-DGGE所得到的DNA條帶加以定序,進一步與16S rRNA gene資料庫比對鑑定出各菌種。由目前所得到的結果顯示,烏山頂泥火山周圍各不同距離土樣,利用DGGE將DNA分離形成條帶後,再經過Quantity One軟體相似度分析,可以得知距
離火山口泥漿越遠的土壤,其菌相與火山口泥漿菌相差異越大。而主要存在火山口泥漿中菌種有Brevundimonas terrae、Ralstonia solanacearum、Ralstonia taiwanensis、Pseudonocardiaceae bacterium、Ochrobactrum anthropi)、Burkholderia phytofirmans、Stenotrophmonas sp.、Methylobacterium sp.、Cryseobacterium sp.、Sphingobacterium sp.、Stenotrophomonas sp. MG-3、Stenotrophomonas sp. EP01等,這些菌種都屬於高耐鹽性質與高pH值的種類。另外,Ochrobactrum anthropi與Burkholderia phytofirmans則是只有在火山口泥漿與5公尺土樣中發現; Ralstonia mannitolilytica、Ralstonia pickettii、Amycolatopsis rugosa、Maricaulis sp.則是只在距離火山口10公尺的土樣中發現,可能是10公尺土樣剛好位於泥漿與植被交界點而存在有特殊的菌種。最後在甲烷利用菌培養方面,已經成功培養出Methylobacterium organophilum與Ochrobactrum anthropi二株可以利用甲烷生長的菌種,並針對其生化反應進行測試,未來希望能夠探討此2株菌在生物復育上的應用,如分解石化污染物的能力等。
Abstract
This research is focus on the analysis of microbial diversity and existance of methanotrophic microbial strains in Wu-Shan-Ding mud volcano areas. The microbial distribution and diversity in soil surrounding the mud volcano were analyzed by polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The 16S rDNA sequences from PCR-DGGE bands were used to identify the bacterial strains with NCBI gene bank data. The results showed that the microbial diversity in the fresh erupted mud sample varied with other soil samples. The degrees of diversity were propotion to the distance away from the mud volcano. The main bacterial species found in the mud sample are Brevundimonas terrae, Ralstonia solanacearum, Ralstonia taiwanensis, Pseudonocardiaceae bacterium, Ochrobactrum anthropi, Burkholderia phytofirmans, Stenotrophmonas sp., Methylobacterium sp., Cryseobacterium sp., Sphingobacterium sp., Stenotrophomonas sp. MG-3, and Stenotrophomonas sp. EP01. According to documents, all of the above strains are tolerant to high salt and alkaline. The Ochrobactrum anthropi and Burkholderia phytofirmans were found only in the fresh erupted mud sample and the 5-meter soil sample, while Ralstonia mannitolilytica, Ralstonia pickettii, Amycolatopsis rugosa, and Maricaulis sp. were found only in 10-meter soil sample. In other word, all of the soil samples we examed in this study have their own specified bacterial strains. Two methanotrophic microganisms, Methylobacterium organophilum and Ochrobactrum anthropi were also successfully isolated in pure cultures. The biochemical characteristics of these two strains had been studied. These two strains show a potential might be able to use in the bioremediation of petroleum pollution.
目次 Table of Contents
中文摘要 II
Abstract IV
第一章 前言 1
1.微生物多樣性的重要性 1
2.泥火山的定義 2
3.台灣泥火山的分佈 2
4.烏山頂泥火山 3
5.烏山頂泥火山泥漿的成份 4
5.甲烷利用菌 5
6.甲烷利用菌在生物科技上的應用 6
7.分子生物在細菌多樣性分析上的重要性 6
8.16S rDNA在微生物上在多樣性研究上的應用 8
9.DGGE技術在土壤微生物分析的應用 9
第二章 實驗目的與流程 11
1.研究目的: 11
2.各採樣點簡述: 11
第三章 材料與方法 16
1.土壤樣品的處裡: 16
3. PCR放大16S rDNA: 17
4.PCR產物純化與濃縮: 20
5.DNA Ligation反應: 21
6.Competent cell製作: 22
7.Transformation: 23
8.質體DNA萃取: 23
9.DGGE電泳分離各16S DNA PCR產物: 25
10.DNA膠體圖譜之分析: 27
11. DNA定序與比對: 28
12.泥漿中甲烷利用菌培養與分離 29
13.菌種特性探討: 30
第四章 結果與討論: 31
1.16S rRNA gene PCR放大結果: 31
2.DGGE分析圖譜以及Quantity One相似度分析: 31
3.DGGE條帶序列比對結果: 33
4.火山口泥漿中菌種探討: 35
5.甲烷利用菌的培養與分離: 41
6.甲烷利用菌的基本生化測試: 42
7. Methylobacterium organophilum與Ochrobactrum anthropi在未來生物復育上的應用: 44
第五章 結論 47
參考文獻: 50
圖表 62
表格 84
附錄:培養基配方 91
附錄:定序之16s rDNA序列 (V6-V8 region) 92
參考文獻 References
王鑫,徐美玲,楊建夫。1988. 台灣泥火山地形景觀。台灣省立博物館年刊,31: 31-49。

吳唐竹。2004. 烏山頂泥火山噴發活動之研究。國立高雄師範大學地理研究所碩士論文。

陳玉樹。2002. 鹽份與乾旱逆境對烏山頂泥火山地區植物分布之影響。國立高雄師範大學生物科學研究所碩士論文。

陳明賢。1999. 泥岩地區適生草種耐鹽性之研究。國立中興大學水土保持學系碩士論文。

陳肇夏。1994. 台灣變質相圖。經濟部中央地質調查所特刊,第2號。

葉高華。2003.由流體地球化學探討台灣泥火山的成因。國立台灣大學海洋研究所碩士論文。

趙鴻椿。2003. 台灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響。 國立成功大學地球科學研究所碩士論文。

詹博舜。2001. 由穩定氫氧同位素探討台灣西南活動構造帶泉水之來源。國立台灣大學地質科學研究所碩士論文。

廖秀芬。1991. 泥火山地區植物之研究。國立台灣中興大學植物學研究所碩士論文。

齊士崢。2002. 台灣地區弧陸碰撞前緣泥火山噴氣成分與成因研究(I),行政院國家科學委員會專題研究計畫成果報告。

潘暉真。2007. 荖濃溪和楠梓仙溪流域微生物相之調查。國立中山大學生物科學學系碩士論文。

謝佩珊。2000. 台灣地區溫泉與泥火山氣體來源之初探。國立台灣大學地質研究所碩士論文。

謝昶毅。2003. 以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相。國立中山大學生物科學學系碩士論文。

英文部分

Abraham,W. R., Strompl, C., Bennasar, A.,Vancanneyt, M., Snauwaert, C., Swings, J., Smitm J. ,and Edward, R. B. M. 2002. Phylogeny of Maricaulis Abraham et al. 1999 and proposal of Maricaulis virginensis sp. nov., M. parjimensis sp. nov., M. washingtonensis sp. nov. and M. salignorans sp. nov. Int. J. Syst. Evol. Microbiol. 52: 2191-2201.

Amann, R. I., Ludwig, W., and Schliefer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 22: 143-169.

Amy, N., Yasuyoshi, N., Hiroyuki, S., Junzo, T., Shiro, W., Toshiki, U., Achara, N., Somsak, K., Akihiro, S., Shiro, H. , and Mikiko, A. 2004. A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J. Gen. Appl. Microbiol. 50: 17–27.

Aziz, C.E., Georgiou, G., and Speitel, G.E. Jr. 1999. Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using Methylobacterium trichosporium OB3b PP358. Biotechnol. Bioeng. 65: 100-107.

Bano, N., and Hollibaugh, J. T. 2000. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the arctic ocean. Appl. Environ. Microbiol. 66: 1960-1969.

Bano, N. Ruffin, S., Ranson, B., and Hollibaugh, J. H. 2004. Phylogentic composition of arctic ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70:781-789.

Blears, M. J., Grandis, S. D., Lee H., and Trevors, J. T. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotech. 21: 99-331.

Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. hum. Genet. 32: 314-331.

Buddenhagen, I.W., Sequeira, L. ,and Kelman, A. 1962. Designation of races of
Pseudomonas solanacearum. Phytopathology. 52: 726.

Chang, Y. J., Stephen, J. R., Richter, A. P., Venosa, A. D., Bruggemenn, J., Macnaughton, S. T., Kowalchuk, G. A., Haines, J. R., Kline, E., and White, D. C. 2000. Phylogenetic analysis of aeorbic freshwater marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J. Microbiol. Methods. 40: 19-31.

Colby, J., Dalton, J., and Whittenbury, R. 1979. Biological and biochemical aspects of microbial growth on C1 compounds. Ann. Rev. Microbiol. 33: 481-517.

Costa, C., Dijekma, C., Friedrich, M., Garcia-Encina, P., Fernandez-Polanco, F., and Stams, A.J. 2000. Denitrification with methane as electron donor in oxygen-limited bioreactors. Appl. Microbiol. Biotechnol. 53: 754-762.

Davis, J. 1999. Millennium bugs. Trends Cell Biol. 9: M2-5.

de Zwart, J. M. M., Nelisse, P. N., and Kuenen, J. G. 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS. Microbiol. Ecol. 20: 261–270.

Doronina, N. V., Trotsenko, Y. A., Tourova, T. P., Kuznetsov, B. B., and Leisinger, T. 2000. Methylopila helvetica sp. nov. and Methylobacterium
dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst. Appl. Microbiol. 23: 210–218.

Du Moulin, G. C. 1979. Airway colonization by Flavobacterium in an intensive
care unit. J. Clin. Microbiol. 10: 155–160.

Emtiazi, F., Schwartz, T., Marten, S. M., Krolla, S. P., and Obst, U. 2004. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water. Res. 38: 1197-1206.

Fo-Ting Shen, Peter, K., Chiu-Chung Young, Wei-An Lai , and Arun, A. B. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int. J. Syst. Evol. Microbiol. 55: 1301-1304.

Fox, J. 1994. Microbial diversity: Low profile, immense breadth. ASM News 60: 533-536.

Freney, J., Hansen, W., Ploton, C., Meugnier, H., Madier, S., Bornstein, N., and Fleurette, J. 1987. Septicemia Caused by Sphingobacterium multivorum. J. Clin. Microbiol. 25: 1126-1128.

Gellego, J. L. R., Loredo, J., Llamas, J. F., Vazquez, F., and Sanchez, J. 2001. Bioremediation of diesel-contaminated soils: evalution of potential in situ techniques by study of bacterial degradation. Biodegradation. 12: 325-335.

Gellego, V., Teresa, G. M., and Ventosa, A. 2005. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 55: 281-287.

Goodwin, K. D., Varner, R. K., Crill, P. M., and Oremland, R. S. 2001. Consumption of tropospheric levels of methyl bromide by C1 compound-utilizing bacteria and comparison to saturation kinetics. Appl. Environ. Microbiol. 67: 5437–5443.

Green, P. N. 1992. The genus Methylobacterium. In The Prokaryotes, 2nd edn, pp. 2342–2349. Edited by A. Balows, H. G. Tru‥per, M. Dworkin, W. Harder and K.-H. Schleifer. New York Springer. 43: 168-171.

Gulledge, J., Ahmad, A., Steudler, P.A., and Pomerantz W.J. 2001. Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl. Environ. Microbiol. 67: 4726-4733.

Hanson, R.S., and Hanson, T.E. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471.

Hanson, R. S., H. C. Tsien, K. Tsuji, G. A. Brusseau, and L. P. Wackett.
1990. Biodegradation of low-molecular-weight halogenated hydrocarbons by
methanotrophic bacteria. FEMS. Microbiol. Rev. 87: 273–278.

Higgins, C. S., Matthew, B., Jamieson, A. L., Simm, A. M., Peter, M. B., and Timothy, R. W. 2001. Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC beta-lactamase. J. Antimicrobiol. Chemotherapy. 47: 745-754.

Hiraishi, A., Furuhata, K., Matsumoto, A., Koike, K. A., Fukuyama, M., and Tabuchi, K. 1995. Phenotypic and genetic diversity of chlorineresistant Methylobacterium strains isolated from various environments. App.l Environ. Microbio.l 61: 2099–2107.

Holben, W. E. 1994. Isolation and purification of bacterial DNA from soil. In: Mickelson, S. H.(Ed.), Methods of Soil Analysis, Part 2, Soil Society of America, Madison, W. I., pp. 727-751.

Holland, M. A. and Polacco, J. C. 1994. PPFMs and other covert
contaminants: is there more to plant physiology than just plant?
Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197–209.

Hollibaugh, J. T., Bano, N., and Ducklow, H. W. 2002. Widespread distribution in Polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68: 1478-1484.

Hoque, S. N., J. Graham, M. E. Kaufmann, and S. Tabaqchali. 2001.
Chryseobacterium (Flavobacterium) meningosepticum outbreak associated with colonization of water taps in a neonatal intensive care unit. J. Hosp. Infect. 47: 188–192.

Hugh, R., and Ryschenkow, E. 1961. Pseudomonas maltophilia, an Alcaligenes-like
species. J. Gen. Microbiol. 26: 123-132.

Ivanova, E. G., Doronina, N. V., and Trotsenko, Y. A. 2001. Aerobic
methylobacteria are capable of synthesizing auxins. Microbiologiya. 70: 452–458.

Jacob, G., Abraham, B., Nechama, P., Klaris, R., Salis, T., Azai, A. and Francisc, S. 2000. Hospital-acquired Brevundimonas vesicularis Septicaemia Following Open-heart Surgery: Case Report and Literature Review. Scand. J. Infect. Dis. 32: 90–91.

Jahng, D., and Wood. T.K. 1994. Trichloroethylene and chloroform degradation by a recombinant pseudomonad expressing soluble methane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60: 2473-2482.

Kan, J., Hanson, T. E., Ginter, J. M., Wang, K., and Chen, F. 2005. Metaproteomic analysis of Chesapeake Bay microbiol communities. Saline Systems. 1: 7.

Kelly, S. S., Anderm, M. C., and Mary, E. L. 1997. Methane and Trichloroethylene Oxidation by an Estuarine Methanotroph, Methylobacter sp. Strain BB5.1. Appl. Environ. Microbiol. 63: 4617-4620.

Kesseru, P., Kiss, I., Bihari, Z., and Polyak, B. 2002. The effects of NaCl and some heavy metals on the denitrification activity of Ochrobactrum anthropi. J. Basic. Microbiol. 42: 268-76.

Kettaneh, A., Francois-Xavier W., Poilane, I., Fain, O., Thomas, M., Herrmann, J. L., and Hocqueloux, L. 2003. Septic Shock Caused by Ochrobactrum anthropi in an Otherwise Healthy Host. J. Clin. Microbiol. 41: 1339-1341.

Khardori, E., Etling, L., Wong, Z., Schble, G., and Bedey, G.P.1990. Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in
patients with cancer. Rev. Infect. Dis. 12: 997-1003.

Koenig, R. L., Morris, R. O., and Polacco, J. C. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184: 1832–1842.

Koh, S. C., J. P. Bowman, and G. S. Sayler. 1993. Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59: 960–
967.

Lontoh, S., and Semrau, J.D. 1998. Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 64: 1106-1114.

Luca, C., Nadia, I., Marialuisa, B., and Giuseppe, C. 2004. The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbia1 ecology of the alteration process. Int. J. Food. Microbial. 90: 83-91.

Nielsen, D. S., Mølle, P. L.r, Rosenfeldt, V., Pærregaard, A., Michaelsen, K. F., and Jakobsen, M. 2003. Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species,and other lactic acid bacteria in the human colon. Appl. Environ. Microbiol. 69: 7545-7548.

Nobutuki, Y., Kazuhiro, Y., Daisuke, S., Noriko, W., Takeshi, K., Kana, N., Akira, Y., Tohoru, K., Takahiro, K., Ryuichiro, K., and Yoshiki, T. 2005. Bacterial Communities in Petroleum Oil Stockpiles. J. Biosci. Bioeng. 99: 143-149

Nubel, U., Ferran, G. P., Kuhi, M., and Muyzer, G. 1999. Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65: 4803-4809.

Nulens, E., Bussels, B., Bols, A., Gordts, B., and Landuyt, H. W. V. 2001. Recurrent bacteremia by Chryseobacterium indologenes in an oncology patient
with a totally implanted intravenous device. Clin. Microbiol. Infect. 7: 391–393.

Madhaiyan, M., Kim, B. Y., Poonguzhali, S., Kwon, S. W., Song, M. H., Ryu, J. H., Go, S. J., Koo, B. S., and Sa, T. M. 2007. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated
from rice. Int. J. Syst. Evol. Microbiol. 57: 326–331.

McDonald, I. R., Uchitama, H., Kambe, S., Yagi, O., and Murrell, J. C. 1997. The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading mathenotroph Methylocystis sp. Strain M. Appl. Environ. Microbiol. 63: 1898-1904.

McDonald, I. R., Doronina, N. V., Trotsenko, Y. A., McAnulla, C., and
Murrell, J. C. 2001. Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethaneutilizing bacteria iso
lated from a polluted environment. Int. J. Syst. Evol. Microbiol. 51: 119–122.

Mo, K., Lora, C. O., Wanken, A. E., Javanmardian, M., Yang, X., and Kulpa, C. F. 1997. Biodegradation of methyl t-butyl ether by pure bacterial cultures. Appl. Microbiol. Biotechnol. 47: 69–72.

Mountfort, D.O. 1990. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium. J. Bacteriol. 172: 3690-3694.

Motta, F. C., Rosado, A. S., and Sigueird, M. M. 2006. Comparison between denaturing gradient gel electrophoresis and phylogenetic analysis for characterization of A/H3N2 influenza samples detected during the 1999-2004 epidemics in Brizal. J. Virobiol. Methods. 135: 76-82.

Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. 1993. Profiling complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.

Muyzer, G., Ramsing, N. B. 1995. Molecular methods to study the organization of microbial communities. Wat. Sci. Teeh. 32: 1-9.

Oremland, R.S., Miller, L.G., Culbertson, C.W., Connell, T.L., and Jahnke, L. 1994. Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Appl. Environ. Microbiol. 60: 3640-3646.

Palleroni, N. J., and Bradbury, J. F. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol. 43: 602-609.

Palys, T., Nakamura, L. K., and Cohan, F. M. 1997. Discovery and classification of ecological diversity in the bacteria world: the role of DNA sequence data. Int. J. Syst. Bacteriol. 47: 1445-1156.

Patt, T. E., Cole, G. C., and Hanson, R. S. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26: 226–229.

Peter, K., Engelhart, S., Rolke, M., and Sennekamp, J. 2005. Extrinsic Allergic Alveolitis (Hypersensitivity Pneumonitis) Caused by Sphingobacterium spiritivorum from the Water Reservoir of a Steam Iron. Int. J. Syst. Bacteriol. 43: 4908-4910.

Rajendra, P. M., Ines, K., Elisabeth, H., and Hartmut, L. 2003. Isolation and Structure Determination of Phenazostatin D, a New Phenazine froma Marine Actinomycete Isolate Pseudonocardia sp. B6273. Z. Naturforsch. 58: 692-694.

Rosenthal, S. L. 1974. Sources of Pseudomonas and Acinetobacter species found human culture materials. Am. J. Clin. Pathol. 62: 807-811.

Satoshi, I., Winfried, B. K., Randall, E. H., and Michael, J. S. 2005. Presence and Growth of Naturalized Escherichia coli in Temperate Soil from Lake Superior Watersheds. Appl. Environ. Microbiol. 72: 612-621.

Schaefer, J. K., and Oremland, R. S. 1999. Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Appl. Environ. Microbiol. 65: 5035–5041.

Semrau, J. D., A. Chistoserdov, J. Lebron, A. Costello, J. Davagnino, E.
Kenna, A. J. Holmes, R. Finch, J. C. Murrell, and M. E. Lidstrom. 1995.
Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177: 3071–3079.

Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Van Elsas, J. D., Faure, D., Reiter, B., Glick, B, R.,G. Wang-Pruski, and Nowak, J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int. J. Syst. Evol. Microbiol. 55: 1187-1192.

Seung, B. K., and Michael, G. 1999. Reclassification of Amycolatopsis rugosa
Lechevalier et al. 1986 as Prauserella rugosa gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 507-512.

Shabir, A. D., Kuenen, J. G., and Muyzer, G. 2005. Nested PCR-Denaturing Gradient Gel Electrophoresis Approach To Determine the Diversity of Sulfate-Reducing Bacteria in Complex Microbial Communities. Appl. Environ. Microbiol. 5: 2325-2330.

Shailym, M., and Lisa, A.C. 2005. Pseudonocardia dioxanivorans sp. nov., a novel
actinomycete that grows on 1,4-dioxane. Int. J. Syst. Evol. Microbiol. 55: 593–598.

Shih, T. T. 1967. A survey of the active mud volcanoes in Taiwan and a study of their types and character of the mud. Petro. Geol. Taiwan. 5: 259-311.

Simon, V., Kevin, M., Hisako, M., Duane, R., Charles, C., Gerben J. Z., and Robert, J. S. 2006. Biodegradation of Ether Pollutants by Pseudonocardia sp. Strain ENV478. Appl. Environ. Microbiol. 72: 5218–5224.

Steyn, P. L., Segers, P., Vancanneyt, M., Sandra, P., Kersters, K., and Joubert, J. J. 1998. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int. J. Syst. Bacteriol. 48: 165-177.

Svetlana, N. D., Claudia, K., and Peter, F. D. 2005. Methylocella Species Are Facultatively Methanotrophic. J. Microbiol. 13: 4665-4670.

Sy, A., Giraud, E., and Jourand, P. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214–220.

Tom, C., Elke, V., Enevold, F., and Peter, V. 2004. Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int. J. Syst. Evol. Microbiol. 54: 1235-1237.

Topp, E., Hanson, R.S., Ringelberg, D.B., White, D.C., and Wheatcroft, R. 1993. Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl. Environ. Microbiol. 59: 3339-3349.

Torsvik, V. J., Goksoyr, F. L., Daae, R., Sorheim, J., Michalsen, and Salte, K. 1994. Use of DNA analysis to determine the diversity of microbial communities. Beyond the biomass: communities pp. 40: 39-48.

Trongpanich, Y., Niamsanit, S., and Siri, S. 2005. Vitamin B-6 Degradation by Pyridoxamine-Pyruvate Transaminase and Pyridoxine 4-Oxidase from
Ochrobactrum anthropi and Enterobacter cloacae-like Bacteria. Science. Asia. 31: 307-311.

Trotsenko, Y. A., Ivanova, E. G., and Doronina, N. V. 2001. Aerobic methylotrophic bacteria as phytosymbionts. Mikrobiologiya. 70: 725–736.

Trotsenko, Y. A., and Khmelenina, V. N. 2002. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177: 123-131.

Vandamme, P., J.-F. Bernardet, P. Segers, K. Kersters, and B. Holmes. 1994.
New perspectives in the classification of the flavobacteria: description of
Chryseobacterium gen. nov. Bergeyella gen. nov., and Empedobacter nom. rev. Int. J. Syst. Bacteriol. 44: 827–831.

Watanabe, K., Teramoto, M., Futamata, H., and Harayma, S. 1998. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria. Appl. Environ. Microbiol. 64: 4396-4402.

Whittenbury, R., Phillips, K. S., and Wilkinson, J. F. 1970. Enrichment, isolation and some properties of methane utilizing bacteria. J. Gen. Microbiol. 61: 205-218.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalshi, J. A., and Tingey, S. V. 1990. DNA polymorphism amplified by arbitrary primer are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.

Woese, C. R. 1987. Bacterial evolution, Microbiol. Rev. 51: 221-271.

Wood, A. P., Kelly, D. P., McDonald, I. R., Jordan, S. L., Morgan, T. D.,
Khan, S., Murrell, J. C., and Borodina, E. 1998. A novel pinkpigmented
facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169: 148–158.

Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., and Nishiuchi, Y. 1995. Transfer of
two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal
of Ralstonia pickettii (Ralston, Palleroni and Douderoff 1973)
comb.nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia
eutropha (Davis 1969) comb. nov. Microbiology and Immunology. 39: 897–904.

Ying, L., Yoshiaki, K., Nagatoshi, F., Takashi, N., Hongsheng, L., Xinxiang, H., Kazuo, K., and Takayuki, E. 2004. Sphingomonas yabuuchiae sp. nov. and
Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int. J. Syst. Evol. Microbiol. 54: 819-825.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code