Responsive image
博碩士論文 etd-0823109-140341 詳細資訊
Title page for etd-0823109-140341
論文名稱
Title
預測式群播輪詢與樹分裂演算法應用於具有同時多封包接收能力之無線接取網路
Predictive Multicast Polling and Tree Splitting Algorithm in Wireless Access Networks with Multipacket Reception
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-19
繳交日期
Date of Submission
2009-08-23
關鍵字
Keywords
媒體存取控制、機率式效能分析、多封包擷取能力、無線區域網路、分裂樹/堆疊演算法
Wireless LAN, Tree/Stack Splitting Algorithm, Probabilistic Performance Analysis, Multipacket Reception, Medium Access Control
統計
Statistics
本論文已被瀏覽 5668 次,被下載 1
The thesis/dissertation has been browsed 5668 times, has been downloaded 1 times.
中文摘要
本篇論文中,針對具有隨機交通模型、有限節點與干擾主導的無線存取網路,我們提出了兩種媒體存取控制的演算法,即預測與群播演算法與分裂樹演算法。在干擾主導的無線存取網路中,只要訊號相對於干擾加上背景噪音的比率超過事先定義的門檻值,則每一個接收端可具有同時接收多個從不同傳送端送出的封包之能力。本篇論文中,我們針對每一個在無線網路中的節點具有大小有限且大於一的佇列。我們利用離散時間馬可夫鏈、馬可夫報酬過程與馬可夫重生過程來推導系統效能,包括了封包輸出量、封包阻斷機率、平均封包延遲與平均系統大小。經由數學與模擬數據除了得知預測式群播輪詢演算法藉由一點點額外的佇列大小即可重大改善了系統效能,而且得知分裂樹演算法的精確系統效能是隨著無線網路中的總節點數而改變的。除此之外,經由嚴格的數學證明與電腦模擬來印證論文所提之演算法的數據結果。
Abstract
In this dissertation, we propose using and analytically evaluate the predictive multicast polling scheme and the tree splitting algorithm for medium access control in interference dominating wireless access networks with random traffic and finite nodes. In an interference dominating wireless network, a receiver could simultaneously receive multiple packets from a variety of transmitters, as long as the signal-to-interference-plus-noise ratio exceeds a predetermined threshold. We concentrate on the case of in which the maximum queue size in a node is finite. We use discrete-time Markov chains, reward processes and regenerative processes to derive the throughput, the packet blocking probability, the average packet delay, and the average system size. We show that the system performance of the predictive multicast polling scheme can be significantly improved with a few additional buffers in the queues. Our study also shows that exact performance of the splitting algorithm depends on the total number of nodes in the networks. We verify our numerical results by rigorous mathematical proof and computer simulations.
目次 Table of Contents
Acknowledgements ii
Abstract (in Chinese) iii
Abstract (in English) iv
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Predictive Multicast Polling in Wireless Access Networks with Multipacket
Reception 7
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Predictive Multicast Polling . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Polling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Update of the Estimated System State . . . . . . . . . . . . . . . . 13
2.3 Markov Chain Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Perfect State Information . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Imperfect State Information . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Perfect System State . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Imperfect System State . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 The Splitting Algorithm in Wireless Access Networks with MultiPacket
Reception 39
3.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Analytical Results for The Case in Which B = 1 . . . . . . . . . . . . . . . 41
3.2.1 Discrete-Time Markov Chain Modeling . . . . . . . . . . . . . . . . 42
3.2.2 The Throughput and The Packet Blocking Probability . . . . . . . 46
3.2.3 The Average System Size and The Average Packet Delay . . . . . . 48
3.2.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Analytical Results for The Case in Which B = 2 . . . . . . . . . . . . . . . 55
3.3.1 Discrete-Time Markov Chain Modeling . . . . . . . . . . . . . . . . 55
3.3.2 The Throughput and The Packet Blocking Probability . . . . . . . 58
3.4 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 On Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.1 When B = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 When B = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Conclusion 65
References 69
參考文獻 References
[1] N. Abramson, “The ALOHA system-Another Alternative for Computer Communications,” Proc. Fall Joint Computer Conference, Am. Federation of Information Processing Soc. Conf., pp. 37, 1970.
[2] A. S. Acampora and S. V. Krishnamurthy, “A New daptive MAC Layer Protocol for Broadband Packet Wireless Networks in Harsh Fading and Interference Environments,”
IEEE/ACM Transactions on Networking, Vol. 8, No. 3, pp. 328-336, June 2000.
[3] S. Adireddy and L. Tong, ”Exploiting Decentralized Channel State Information for Random Access,” IEEE Transactions on Information Theory, Vol. 51, No. 2, pp. 537-
561, February 2005.
[4] D. Bertsekas and R. Gallager, Data Networks, Second edition, 1992, Prentice Hall Publication, Upper Saddle River, NJ 07458, USA.
[5] F. Cali, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit,” IEEE/ACM Transactions on Networking, Vol. 8, No. 6, pp. 785-799, December 2000.
[6] J. I. Capetanakis, “Tree algorithm for packet broadcast channel,” IEEE Transactions on Information Theory, Vol. 25, pp. 505-515, September. 1979.
[7] J. I. Capetanakis, “Generalized TDMA: The Multiaccessing Tree Protocol,” IEEE Transactions on Communications, Vol. 27, pp. 1476-1484, Oct. 1979.
[8] I. Chlamtac and A. Farrago, “An Optimal Channel Access Protocol with Multiple Reception Capability,” IEEE Transactions on Computers, Vol. 43, No. 4, pp. 480-484, April 1994.
[9] A. Chockalingam, M. Zorzi, L. B. Milstein, and P. Venkataram, “Performance of a Wireless Access Protocol on Correlated Rayleigh Fading Channels with Capture,” IEEE Transactions on Communications, Vol. 46, pp. 644-655, May 1998.
[10] S. Choi and K. G. Shin, “A Unified Wireless LAN Architecture for Real-Time and Non-Real-Time Communications Services,” IEEE/ACM Transactions on Networking, Vol. 8, No. 1, pp. 44-59, February 2000.
[11] R. R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya, ”On Designing MAC Protocols for Wireless Networks Using Directional Antennas,” IEEE Transactions on Mobile Computing, Vol. 5, No. 5, pp. 477-491, May 2006.
[12] E. Cinlar, Introduction to Stochastic Processes, 1975, Prentice Hall Publication.
[13] M. Coupechoux, T. Lestable, C. Bonnet, and V. Kumar, “Throughput of the Multihop Slotted Aloha with Multi-packet Reception,” Lecture Notes in Computer Science, Vol. 2928/2003, pp. 301-314, 2004.
[14] R. G. Gallager, “Conflict Resolution in Random Access Broadcast Networks,” Proc. Air Force Office of Scientific Research Workshop Communication Theory Applications, pp. 74-76, September 1978.
[15] R. G. Gallager, Discrete Stochastic Process,1996, Kluwer Academic.
[16] R. Garces and J. J. Garcia-Luna-Aceves, ”Collision Avoidance and Resolution Multiple Access for Multichannel Wireless Networks,” IEEE INFOCOM 2000, pp. 595-602.
[17] R.-H. Gau, ”Performance Analysis of Slotted Aloha in Interference-Dominating Wireless Ad-Hoc Networks,” IEEE Communications Letters, Vol. 10, No. 5, pp. 402-404, May 2006.
[18] R.-H. Gau and K.-M. Chen, ”Predictive Multicast Polling for Wireless Networks with Multipacket Reception and Queueing,” IEEE Transactions on Mobile Computing, Vol. 5, No. 6, pp. 725-737, June 2006.
[19] R.-H. Gau and K.-M. Chen, ”Probability Models for the Splitting Algorithm in Wireless Access Networks with Multipacket Reception and Finite Nodes,” IEEE Transactions on Mobile Computing, vol. 7, no. 12, pp. 1519-1535, December 2008.
[20] S. Ghez, S. Verdu, and S. C. Schwartz, “Stability Properties of Slotted ALOHA with Multipacket Reception Capability,” IEEE Transactions on Automatic Control, Vol. 33, pp. 640-649, July 1988.
[21] S. Ghez, S. Verdu, and S. C. Schwartz, “Optimal Decentralized Control in the Random-Access Multipacket Channel,” IEEE Transactions on Automatic Control, Vol. 34, pp. 1153-1163, November 1989.
[22] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, third edition, 1998, John Wiley and Sons.
[23] M. G. Hluchyj, “Multiple Access Window Protocol: Analysis for Large Finite Populations,” Proc. IEEE Conf. Decision and Control, pp. 589-595, 1982.
[24] M. G. Hluchyj and R. G. Gallager, “Multiaccess of a Slotted Channel by Finitely Many Users,” Proc. Nat. Telecommunications Conf., pp. D4.2.1-D4.2.7, August 1981.
[25] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Stochastic Processes, 1972, Houghton Mifflin Company.
[26] B. V. Houdt and C. Blondia, ”Analysis of an Identifier Splitting Algorithm Combined with Polling (ISAP) for Contention Resolution in a Wireless Access Network,” IEEE Journal on Selected Areas in Communications, Vol. 18, No. 11, pp. 2345-2355, November 2000.
[27] D. G. Jeong, C.-H. Choi, and W. S. Jeon, “Design and Performance Evaluation of a New Medium Access Control Protocol for Local Wireless Data Communications,” IEEE/ACM Transactions on Networking, Vol. 3, No. 6, pp. 742-652, December 1995.
[28] L. Kleinrock and Y. Yemini, “An Optimal Adaptive Scheme forMultiple Access Broadcast Communications,” Proc. Int’l Conf. Communications, pp. 7.2.1-7.2.5, June 1978.
[29] S. V. Krishnamurthy, A. S. Acampora, and M. Zorzi, “Polling-Based Media Access Protocols for Use with Smart Adaptive Array Antennas,” IEEE/ACM Transactions on Networking, Vol. 9, No. 2, pp. 148-161, April 2001.
[30] A. M. Law, Simulation Modeling and Analysis, 4th Edition, 2007, McGraw-Hill Companies, Inc., USA.
[31] D. F. Lyons and P. Papantoni-Kazakos, “A Window Random-Access Algorithm for Environments with Capture,” IEEE Transactions on Communications, Vol. 37, pp. 766-770, July 1989.
[32] V. Naware, G. Mergen, and L. Tong, ”Stability and Delay of Finite-User Slotted ALOHA With Multipacket Reception,” IEEE Transactions on Information Theory, Vol. 51, No. 7, pp. 2636-2656, July 2005.
[33] M. Paterakis and P. Papantoni-Kazakos, “A Simple Window Random-Access Algorithm with Advantageous Properties,” IEEE Transactions on Information Theory, Vol. 35, pp. 1124-1130, September 1989.
[34] D. Poole, Linear Algebra, A Modern Introduction, First edition, 2003, Wadsworth Group.
[35] X. Qin and R. Berry, ”Opportunistic Splitting Algorithms for Wireless Networks,” IEEE INFOCOM 2004, Vol. 3, pp. 1662-1672.
[36] S. M. Ross, Stochastic Processes, 2nd Edition, 1996, John Wiley and Sons Inc., New York, NY, USA.
[37] S. M. Ross, Introduction to Probability Models, Seventh Edition, 2000, Academic Press.
[38] S. M. Ross, Simulation, 4th Edition, 2006, Academic Press, USA.
[39] F. Shad, T. D. Todd, V. Kezys, and J. Litva, “Dynamic Slot Allocation (DSA) in Indoor SDMA/TDMA Using a Smart Antenna Base station,” IEEE/ACM Transactions on Networking, Vol. 9, No. 1, pp. 69-81, February 2001.
[40] O. Sharon and E. Altman, “An Efficient Polling MAC forWireless LANs,” IEEE/ACM Transactions on Networking, Vol. 9, No. 4, pp. 439-451, August 2001.
[41] M. Sidi and I. Cidon, “Splitting protocols in presence of capture,” IEEE Transactions on Information Theory, Vol. 31, pp. 295-301, March 1985.
[42] R. Srinvasan and A. K. Somani, “On Achieving Fairness and Efficiency in High-Speed Shared Medium Access,” IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pp. 111-124, February 2003.
[43] D. Tse and P. Viswanath, Fundamentals of Wireless Communications, 2005, Cambridge University Press, USA.
[44] B. Yucel and H. Delic, “Mobile Radio Window Random-Access Algorithm with Diversity,” IEEE Transactions on Vehicular Technology, Vol. 49, pp. 2060-2070, Nov. 2000.
[45] Q. Zhao and L. Tong, “A Multiqueue Service Room MAC Protocol for Wireless Networks With Multipacket Reception,” IEEE/ACM Transactions on Networking, Vol. 11, No. 1, pp. 125-137, February 2003.
[46] Q. Zhao and L. Tong, ”A Dynamic Queue Protocol for Multiaccess Wireless Networks with Multipacket Reception,” IEEE Transactions on Wireless Communications, Vol. 3, No. 6, pp. 2221-2231, November 2004.
[47] M. Zorzi, “Mobile Radio Slotted ALOHA with Capture and Diversity,” Wireless Networks, Vol. 1, pp. 227-239, May 1995.
[48] M. Zorzi and R. R. Rao, “Capture and Retransmission Control in Mobile Radio,” IEEE Journal on Selected Areas in Communications, Vol. 12, pp. 1289-1298, October
1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.228.88
論文開放下載的時間是 校外不公開

Your IP address is 18.191.228.88
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code