Responsive image
博碩士論文 etd-0823109-214139 詳細資訊
Title page for etd-0823109-214139
論文名稱
Title
聚丁二酸二丁酯共聚酯與混摻物之檢測分析、結晶、熔融行為與形態
Copolymers and Blends of Poly(butylene succinate): Characterization, Crystallization, Melting Behavior, and Morphology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-26
繳交日期
Date of Submission
2009-08-23
關鍵字
Keywords
結晶、熔融、共聚酯、成長速率、丁二酸
Copolyester, Succinate, Crystallization, Growth rate, Melting
統計
Statistics
本論文已被瀏覽 5714 次,被下載 2589
The thesis/dissertation has been browsed 5714 times, has been downloaded 2589 times.
中文摘要
本研究探討的主題如下:(一) 以丁二酸、丙二醇與1,4-丁二醇,合成之含有20%及50%丁二酸二丙酯(TS)之聚丁二酸二丁酯共聚酯(PBTSu 80/20, PBTSu 50/50),比較共聚酯中丁二酸二丙酯所含有的比例對其熱性質及結晶速率的影響;(二) 以丁二酸、1,4-環己烷二甲醇與1,4-丁二醇,合成之含有10%丁二酸環己烷二甲酯之聚丁二酸二丁酯共聚酯(PBCHDMSu 90/10),探討共聚酯中之環己烷結構對熱性質及結晶速率的影響;(三) 以聚丁二酸二丁酯分別與聚丁二酸二丙酯和聚丁二酸二乙酯各以1:1之比例加以混摻(PBSu/PTSu 50/50, PBSu/PESu 50/50),探討其結晶行為,並與同組成比例之共聚酯(PBTSu 50/50, PBESu 50/50)相互比較結晶形態的差異。本研究實驗以核磁共振分析儀(NMR)分析樣品之組成;微差掃瞄熱卡儀(DSC)與溫度調幅式微差掃瞄熱卡儀(TMDSC)測量樣品之熱性質,並經等溫結晶由Hoffman-Weeks線性外差法與Avrami 方程式分別求得平衡熔點與其結晶動力學;以熱重分析儀(TGA)與偏光顯微鏡(PLM)探討樣品之熱穩定性;以廣角X光繞射分析儀(WAXD)討論結晶結構之差異;偏光顯微鏡分別以等溫與非等溫結晶,觀察結晶形態與相分離,探討樣品之成長速率與區型轉移分析(regime transition);將樣品經由化學蝕刻之後,以掃描式電子顯微鏡(SEM)與原子力顯微鏡(AFM)觀察其結晶形態。由單一的玻璃轉移度與趨近於1的亂度參數可以證明共聚酯PBTSu 80/20中丁二酸二丁酯與丁二酸二丙酯為一無規的分佈。共聚酯中隨著TS含量的增加會造成結晶度與結晶速率的下降,原因為能夠形成結晶的BS部份之平均鏈段長會隨著TS含量的增高而變低,使其結晶受到限制。由微差掃瞄熱卡儀觀測PBTSu 80/20與PBCHDMSu 90/10之熔融行為,在熔融過程中可看到三個熔融峰。多重熔融行為乃由熔融-再結晶-再熔融與多重層板結晶所造成,當共聚酯結晶溫度增加,再結晶現象則越趨不明顯。利用Hoffman-Weeks線性外插法得到PBTSu 80/20與PBCHDMSu 90/10的平衡熔點分別為113.5與118.7
Abstract
The topics of this study are as follows: (a) Poly(butylene succinate) (PBSu) rich random copolymers containing ~20% and ~50% trimethylene succinate (TS), PBTSu 80/20 and PBTSu 50/50 that were synthesized from 1,4-butanediol, 1,3-propanediol and succinic acid: The influence of minor TS units on the thermal properties and crystallization rate of PBSu was investigated. (b) Random copolymer of ~90% PBSu and ~10% poly(1,4-cyclohexanedimethylene succinate), PBCHDMSu 90/10, that was synthesized from 1,4-butanediol, 1,4-cyclohexanedimethanol and succinic acid: The influence of cyclohexene unit on the thermal properties and crystallization rate of PBSu was investigated. (c) Blends of PBSu and poly(trimethylene succinate) (PTSu) or poly(ethylene succinate) (PESu): The weight ratio PBSu and PTSu (or PESu ) were 1:1. The crystallization and morphology of blends (PBSu/PTSu 50/50 and PBSu/PESu 50/50) were investigated and compared with PBTSu 50 and PBESu 50/50. The chemical composition and the sequence distribution of co-monomers in copolyesters were determined using NMR. Thermal properties of polyesters and blends were characterized using differential scanning calorimeter (DSC) and temperature-modulated DSC (TMDSC). The crystallization kinetics and equilibrium melting temperature were analyzed with Avrami equation and Hoffman-Weeks linear extrapolation. The thermal stability of polyesters was analyzed by thermogravimeter (TGA) and polarized light microscope (PLM) under nitrogen. Wide-angle X-ray diffractograms (WAXD) were obtained for specimens after complete isothermal crystallization. The growth rates, regime transition temperature, morphology and phase separation were studied using polarized light microscope (PLM) with isothermal method or nonisothermal method. The morphology of specimens after chemical etching were investigated using atomic force microscope (AFM) and scanning electron microscope (SEM). The distribution of butylene succinate (BS) and TS units in PBTSu 80/20 was found to be random from the evidence of a single Tg and a randomness value close to 1.0 for a random copolymer. With the increasing of minor amounts of comonomers, the sequence length of butylene succinate decreases, and the crystallization rate and the degree of crystallinity drop. DSC heating curves of isothermal crystallized PBTSu 80/20 and PBCHDMSu 90/10 showed triple melting peaks. Multiple melting behaviors indicate that the upper melting peaks are associated with the primary and the recrystallized crystals, or the crystals with different lamellar thickness. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. Hoffman-Weeks linear plots gave an equilibrium melting temperature of 113.5
目次 Table of Contents
目錄 …………………………………………………………………………………Ⅰ
Scheme Contents……………………………………………………………………. Ⅳ
表目錄………………………………………………………………………………..Ⅳ
圖目錄……………………………………………………………………………......Ⅵ
摘要………………………………………………………………………………..XIII
第一章 緒論
1.1簡介…………………………………………………………………........1
1.2 研究目的………………………………………………………………...3
第二章 文獻回顧
2.1 聚丁二酸二丁酯與聚丁二酸二乙酯的結晶結構……………………...6
2.2高分子之結晶動力學 (crystallization kinetics)…………………………6
2.2.1 Avrami 方程式………………………………………................7
2.2.2 多重熔融峰之行為……………………………………................8
2.2.3 平衡熔點…………………………………………………………9
2.2.4 區型轉移(regime transition)分析與結晶成長速率……………10
2.3 偏光顯微鏡…………………………………………………………….11
2.3.1 動態結晶速率分析……………………………………………..13
2.4 溫度調幅式微差掃描熱卡儀 …………………………………...……14
第三章 實驗
3.1 實驗材料……………………………………………………………….16
3.2 實驗儀器與設備……………………………………………………….16
3.3 樣品製備……………………………………………………………….18
3.3.1 樣品的純化……………………………………………………..18
3.3.2 混摻樣品的製備………………………………………………..18
3.3.3 薄膜試片壓製…………………………………………………..18
3.4 性質檢測分析………………………………………………………….19
3.4.1 分子量的量測…………………………………………………..19
3.4.2 化學結構分析…………………………………………………..19
3.4.3 玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………………….19
3.4.4 熱穩定性………………………………………………………..20
3.4.5 廣角X光繞射分析…………………………………...………..20
3.5 等溫結晶動力學與熔融行為………………………………………….20
3.5.1 等溫結晶動力學分析…………………………………………..20
3.5.2 熔融行為………………………………………………………..21
3.6球晶成長速率、形態與區型轉移分析………………………….…….21
3.6.1 等溫結晶………………………………………………………..21
3.6.2 動態結晶………………………………………………………..22
第四章 結果與討論(一):PBTSu 80/20
4.1 分子量的量測……………………………………………………….....23
4.2 化學微結構分析……………………………………………………….23
4.3 熱性質分析…………………………………………………………….24
4.3.1 玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………………….24
4.3.2 熱穩定性分析…………………………………………………..25
4.4 廣角X光繞射分析………………………………...…………………..25
4.5 等溫結晶動力學分析與熔融行為…………………………………….25
4.6 球晶成長速率與區型轉移分析……………………………………….28
4.7 結晶形態……………………………………………………………….29
第五章 結果與討論(二):PBCHDMSu 90/10
5.1 分子量的量測……………………………………………………….....31
5.2 化學微結構分析……………………………………………………….31
5.3 熱性質分析…………………………………………………………….31
5.3.1 玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………………….31
5.3.2 熱穩定性分析…………………………………………………..32
5.4廣角X光繞射分析……………………………………………………..33
5.5 等溫結晶動力學分析與熔融行為…………………………………….33
5.6 球晶成長速率與區型轉移分析……………………………………….35
5.7 結晶形態……………………………………………………………….36
第六章 結果與討論 (三):PBTSu 50/50與PBSu/PTSu 50/50
6.1 混摻樣品之玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………........37
6.2 廣角X光繞射分析…………………………………………………….37
6.3結晶與熔融行為之探討..........................................................................38
6.3.1 PBTSu 50/50之結晶與熔融行為.................................................38
6.3.2 PBSu/PTSu 50/50之結晶與熔融行為.........................................38
6.4 結晶形態.................................................................................................39
6.4.1 PBTSu 50/50之結晶形態.............................................................39
6.4.2 PBSu/PTSu 50/50之結晶形態.....................................................40
第七章 結果與討論 (四):PBESu 50/50與PBSu/PESu 50/50
7.1 混摻樣品之玻璃轉移溫度(Tg)與熔融溫度(Tm)的量測…………........42
7.2 廣角X光繞射分析…………………………………………………….42
7.3結晶與熔融行為之探討..........................................................................43
7.3.1 PBESu 50/50之結晶與熔融行為.................................................43
7.3.2 PBSu/PESu 50/50之結晶與熔融行為.........................................43
7.4 結晶形態.................................................................................................44
7.4.1 PBESu 50/50之結晶形態.............................................................44
7.4.2 PBSu/PESu 50/50之結晶形態.....................................................45
第八章 結論……………………………………………………………....................47
參考文獻……………………………………………………………..........................48
參考文獻 References
參考文獻
1. 行政院環保署雙月刊第61期(91年7月)
2. Mochizuki M, Hirami M. Structural Effects on the Biodegradation of Aliphatic Polyester. Polym Adv Technol 1997; 8: 203-209.
3. Okada M. Chemical Synthesis of Biodegradable Polymers. Prog Polym Sci 2002; 27: 87-133.
4. Aburto J, Alric I, Thiebaud S, Borredon E, Bikiaris D, Prinos J, Panayiotou C. Synthesis, Characterization, and Biodegradability of Fatty-Acid of Amylose and Starch. J Appl Polym Sci 1999; 74: 1440-1451.
5. Lenz RW, Marchessault R. Bacterial Polyesters: Biosynthesis, Biodegrable Plastics and Biotechnology. Biomacromolecules 2005; 6: 1-8.
6. Reeve MS, McCarthy SP, Downey MJ, Gross RA. Polylactide Stereochemistry: Effect on Enzymatic Degradability. Macromolecules 1994; 27: 825-831
7. Papageorgiou GZ, Bikiaris DN. Biodegradable Poly(alkylene succinate) Blend: Thermal Behavior and Miscibility Study. J Polym Sci, Part B: Polym Phys 2006; 44: 584-597.
8. Tezuka Y, Tshii N, Kasuya K-I, Mitomo H. Degradation of Poly(ethylene succinate) by Mesophilic Bacteria. Polym Degrad Stab 2004; 84: 115-121.
9. Rizzarelli P, Puglisi C, Montaudo G. Soil Burial and Enzymatic Degradation in Solution of Aliphatic Co-polyesters. Polym Degrad Stab 2004; 85: 855-863.
10. Hakkarainen M, Albertsson A-C, Karlsson S. Weight Losses and Molecular Weight Changes Correlated with the Evolution of Hydroxyacids in Simulated in vivo Degradation of Homo- and Copolymers of PLA. Polym Degra Stab 1996; 52: 283-291.
11. Li SM, Garreau H, Vert M. Structure-Property Relationships in the Case of the Degradation of Massive Aliphatic Poly(α-hydroxy acids) in Aqueous Media. J Mat Sci: Mat Med 1990; 1: 123-130.
12. Mochizuki M, Mukai K, Yamada K, Ichise N, Murase S, Iwaya Y, Structural Effects upon Enzymatic Hydrolysis of Poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997; 30: 7403-7407.
13. Cao A, Okamurac T, Nakayamab K, Inoued Y, Masudab T. Studies on Syntheses and Physical Properties of Biodegradable Aliphatic Poly(butylene succinate-co-ethylene succinate)s and Poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002; 78: 107-117.
14. Rizzarelli P, Puglisia C, Montaudob G. Soil Burial and Enzymatic Degradation in Solution of Aliphatic co-Polyesters. Polym Degrad Stab 2004; 85: 855-863.
15. Yoo Y, Ko MS, Han SL, Kim TY. Degradation and Physical Properties of Aliphatic Copolyesters Derived from Mixed Diols. Polym J 1998; 30: 538-545.
16. Lorenzo MLD. Spherulite Growth Rates in Binary Polymer Blends. Prog Polym Sci 2003; 28: 663-689.
17. Zhehui L, Maréchal P, Jérôme R. Melting and Crystallization of Poly(vinylidene
fluoride) Blended with Polyamide 6. Polymer 1997; 38: 5149-5153
18. Ferreira BMP, Zavaglia CAC, Duek EAR. Films of PLLA/PHBV: Thermal,
Morphological and Mechanical Characterization. J Appl Polym Sci 2002; 86:2898-2906.
19. Qiu Z, Ikeharab T, Nishi T. Miscibility and Crystallization of Poly(ethylene oxide)
and Poly(ε-caprolactone) Blends. Polymer 2003; 44: 3101-3106.
20. Pezzin APT, Alberda Van Ekenstein GOR, Zavaglia CAC, Brinke G Ten, Duek
EAR. Poly(para-dioxanone) and Poly(l-lactic acid) Blends: Thermal, Mechanical,
and Morphological Properties. J Appl Polym Sci 2003; 88: 2744-2755.
21. Ichikawa Y, Washiyama J, Moteki Y, Noguchi K, Okuyama K. Crystal Modification in Poly(ethylene succinate). Polym J 1995; 27: 1264-1266
22. Ichikawaa Y, Kondoa H, Igarashia Y, Noguchia K, Okuyamaa K, Washiyamab J.
Crystal Structures of α and β forms of Poly(tetramethylene succinate). Polymer 2000; 41: 4719-4727.
23. Ueda AS, Chatani Y, Tadokoro H. Structural Studies of Polyesters. IV. Moleculer
and Crystal Structures of Poly(ethylene succinate) and Poly(ethylene oxalate).Polym J 1971; 2: 387-397.
24. Ichikawa Y, Suzuki J, Washiyawa J, Moteki Y. Strain-Induced Crystal Modification in Poly(tetramethylene succinate). Polymer 1994; 35: 3338-3339.
25. Hamley IW. Introduction to Soft Matter. Wiley, New York. 2000; p.103
26. Avrami M. Kinetics of Phase Change. II Transformation-Time Relation for Random Distribution of Nuclei. J Chem Phys 1939; 8: 212-224.
27. Avrami M. Granulation, Phase Change, and Microstructure. Phase Change. III. J
Chem Phys 1941; 9: 177-184.
28. Lee Y, Porter RS. Double-Melting Behavior of Poly(ether ether ketone).
Macromolecules 1987; 20: 1336-1341.
29. Lee Y, Porter RS, Lin JS. On the Double-Melting Behavior of Poly(ether ether
ketone). Macromolecules 1989; 22: 1756-1760.
30. Bassett DC, Olley RH, Al Raheil IAM. On Crystallization Phenomena in PEEK.
Polymer 1988; 29: 1745-1754.
31. Janimak JJ, Cheng SZD, Zhang A. Isotacticity Effect on Crystallization and
Melting in Polypropylene Fraction: 3. Overall Crystallization and Melting Behaviour. Polymer 1992; 33: 728-735.
32. Wei CL, Chen M, Yu FE. Temperature Modulated DSC and DSC Studies on the
Origin of Double Melting Peaks in Poly(ether ether ketone). Polymer 2003; 44:
8185-8193
33. Hoffman. JD, Weeks JJ. Melting Process and the Equilibrium Melting Temperature of Polychlorotrifluoroethylene. J Res Nat Bur Stand 1962; 66A:13-28.
34. Hoffman JD, Miller RL. Kinetics and Crystallization from the Melt and Chain
Folding in Polyethylene Fractions Revisited: Theory and Experiment. Polymer 1997; 38: 3151-3212.
35. Hoffman JD, Davis G.T, Lauritzen Jr. JI. Treatise on Solid State Chemistry, Vol. 3,
Crystalline and Noncrystalline Solids, Hannay, N. B. Ed., Plenum, New York, 1976, Chap. 7.
36. Gedde UW. Polymer Physics, Chapman & Hall, London, 1996.
37. Nesse WD, Introduction to Optical Mineralogy 2nd, University of Northern Colorado, 1991.
38. Chung CT, Chen M. Spherulite Growth Rate of Poly(ether ether ketone) (PEEK).
Polym Prepr 1992; 33: 420-421.
39. Chen M, Chung CT. Analysis of Crystallization Kinetics of Poly(ether ether ketone) by a Nonisothermal Method. J Polym Sci, Part B: Polym Phys 1998; 36: 2393-2399.
40. Wurm A, Merzlyakov M, Schick C. Reversible Melting Probe by Temperature Modulated Dynamic Mechanical and Calorimetric Measurements. Colloid Polym Sci 1998;276:289-296.
41. Wurm A, Merzlyakov M, Schick C. Crystallization of Polymers Studied by
Temperature-modulated Techniques (TMDSC, TMDMA). J Macromol Sci Phys 1999;B38:693-708.
42. TA Instruments, Applications Library, TN45 and TA210
43. Reading M. Modulated DSC- A New Way Forward in Materials Characterization.Trends Polym Sci 1993;8:248-253.
44. Yamadera R, Murano M. The Determination of Randomness in Copolyesters by High Resolution Nuclear Magnetic Resonance. J Polym Sci, Part A-1:Polym Chem 1967; 5: 2259-2268.
45. Newmark RA. Sequence Distribution in Polyethylene/Tetramethylene Terephthalate Copolyesters by 13C-NMR. J Polym Sci Polym Chem 1980; 18: 559-563.
46. Ko CY, Chen M, Wang HC, Tseng IM. Sequence Distribution, Crystallization and Melting Behavior of Poly(ethylene terephthalate-co-trimethylene terephthalate) Copolyesters. Polymer 2005; 46: 8752-8762.
47. Backson SEC, Kenwright AM, Richards RW. A 13C-NMR. Study of Transesterification in Mixtures of Poly(ethylene terephthalate) and Poly(butylene
terephthalate). Polymer 1995; 36: 1991-1998.
48. Shyr TW, Lo CM, Ye SR. Sequence Distribution and Crystal Structure of Poly(ethylene/trimethylene terephthalate) Copolyesters. Polymer 2005; 46: 5284-5298.
49. Papageorgiou GZ, Bikiaris DN. Crystallization and Melting Behavior of Three Biodegradable Poly(alkylene succinates). A Comparative Study. Polymer 2005; 46: 12081-12092.
50. Yoo ES, Im SS. Melting Behavior of Poly(butylenes succinate) During Heating Scan by DSC. J Polym Sci Part B: Polym Phys 1999; 37: 1357-1366.
51. Li L, Zhou J, Wang X. Multiple Melting Behavior of Poly(butylene succinate).Eur Polym J 2007; 43: 3163-3170.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code