Responsive image
博碩士論文 etd-0823110-172124 詳細資訊
Title page for etd-0823110-172124
論文名稱
Title
鈦合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討
Manufacturing and Mechanical Properties of Ti/APC-2 Nanocomposite Laminates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-06
繳交日期
Date of Submission
2010-08-23
關鍵字
Keywords
鈦合金、APC-2、高溫、疲勞、奈米複材積層板
nanocomposite laminate, APC-2, titanium alloy, elevated temperature, fatigue
統計
Statistics
本論文已被瀏覽 5649 次,被下載 7
The thesis/dissertation has been browsed 5649 times, has been downloaded 7 times.
中文摘要
本文旨在研製鈦合金碳纖維奈米複材積層板與探討在不同環境溫度下的機械性質,積層板是由二層0.55 mm APC-2預浸布與三層0.5 mm 鈦合金所構成。在積層板製作過程中,首先在預浸布表面均勻塗佈SiO2奈米微粒,並依十字疊[0/90]s與類似均向疊[0/45/90/-45]兩種疊序堆疊;為了使鈦合金與預浸布產生良好黏結,鈦合金是以鉻酸陽極法進行表面處理,之後以修正隔膜成型法進行固化成型,完成製作過程。拉伸與疲勞測試是以MTS 810材料測試試驗機來進行,並以MTS 651環境控制箱來保持實驗的環境溫度,如RT、75°C、100°C、125°C與150°C。
在靜態拉伸測試中可以得到十字疊與類似均向疊奈米複材積層板的極限強度縱向勁度等機械性質,並依所得的試驗數據結果,繪製該溫度下應力應變關係圖;在疲勞測試中,所採用的負載形式為拉伸-拉伸,應力比為0.1,頻率為5Hz,而負載波型為正弦波型,並以負荷控制作為控制模式,最後將疲勞實驗所得數據在不同環境溫度參數下繪製成無因次化應力與疲勞振次關係圖。
在綜合所有實驗結果後,可以獲致幾點結論:首先,鈦合金/十字疊奈米複材基層板之極限強度於常溫時較鈦合金/十字疊複材積層板高;第二,兩種疊序的奈米複材積層板,其極限應力與應力振次曲線均隨著溫度升高而降低,在環境溫度下150°C為最低;第三,鈦合金/類似均向疊試片之抗疲勞能力較鈦合金/十字疊試片優良;第四,鈦合金/類似均向疊試片在抵抗溫度效應的能力較優;第五,縱向勁度藉由改變擬合區間後,已有相當大的改善。
Abstract
The aims of this thesis are fabrication of Ti/APC-2 hybrid nanocomposite laminates and investigation of their mechanical properties at elevated temperature. The prepregs of APC-2 were stacked into cross-ply [0/90]s and quasi-isotropic [0/45/90/-45] laminates spread uniformly with nanoparticles SiO2. The sheet surface was treated by chromic acid anodic method to achieve perfectly bonding with matrix PEEK. The prepregs were sandwiched with the Ti alloy sheets. The modified diaphragm curing process was adopted to produce Ti/APC-2 hybrid nanocomposite laminates. The nanocomposite laminates were a five-layer composite with two 0.55 mm thick APC-2 layers sandwiched by three 0.5 mm thick Gr.1 titanium alloy sheets. The MTS 810 material testing machine was used to conduct the tension and fatigue tests. In addition, the MTS 651 environmental chamber was installed to control and keep the experimental temperature, such as 25°C, 75°C, 100°C, 125°C and 150°C.
The mechanical proper¬ties, such as ultimate tensile strength, longitudinal stiffness of cross-ply and quasi-isotropic nanocomposite laminates, were obtained from the static tensile test. The stress-strain diagrams were plotted in the corresponding temperature. The constant stress amplitude tension-tension cyclic tests were carried out by using load-control mode at a sinusoidal loading with frequency of 5Hz and stress ratio R=0.1. The received fatigue data were plotted in normalized S-N curves at variously elevated temperature.
From the summarized results, some conclusions were made. First, the ultimate strength of Ti/APC-2 nanocomposits was better than Ti/APC-2 composites at room temperature; Second, Both two type nanocomposite laminates’ ultimate strength and S-N curves go downwards as temperature rising, especially at 150°C; Third, The fatigue tensile strength of both hybrid composite laminates was the lowest at 150°C. Fourth, Ti/APC-2 quasi-isotropic nanocomposite laminates had better fatigue resistance than Ti/APC-2 cross-ply nanocomposite laminates. Finally,The longitudinal stiffness was in good agreement with prediction by using the modified ROM because of the changed curve fitting ranges.
目次 Table of Contents
目錄 I
表目錄 IV
圖目錄 VII
摘要 XI
ABSTRACT XII
第一章 緒論 1
1-1 前言 1
1-2 複合材料概述 2
1-3 奈米材料性質簡介 2
1-4奈米複合材料簡介 4
1-5 研究方向 4
1-6文獻回顧 5
1-7 組織與章節 8
第二章 研究方法 9
2-1 材料性質簡介 9
2-1-1 鈦 9
2-1-2 碳纖維/聚醚醚酮APC-2預浸布( AS-4/PEEK ) 10
2-1-3 SiO2奈米微粒簡介 11
2-2 儀器設備 11
2-3鈦合金奈米複材積層板之製程 12
2-3-1 鈦合金之前處理 12
2-3-2 APC-2之前處理 13
2-3-3 熱壓製程 13
2-4 試片製作與分組 15
2-5 拉伸與疲勞實驗 15
2-6 掃瞄式電子顯微鏡(SEM) 16
第三章 實驗結果 23
3-1 鈦合金表面處理 23
3-2靜態拉伸實驗 24
3-3疲勞實驗 24
3-4試片斷面觀察 26
第四章 分析與討論 58
4-1 Ti/APC-2奈米複材積層板機械性能探討 58
4-1-1 與混合理論比較 58
4-1-2 極限強度實驗值與混合理論比較 59
4-1-3縱向勁度曲線擬合值與混合理論比較 59
4-1-4 疲勞性質探討 61
4-2 溫度效應 61
4-3 破壞模式之探討 63
4-3-1 破壞過程 63
4-3-2 拉伸破壞 64
4-3-3 疲勞破壞 65
4-4 奈米顆粒之影響 67
4-5 疲勞試驗與材料性質比較 68
第五章 結論與建議 79
5-1結論 79
5-2建議 80
5-3 未來發展 81
參 考 文 獻 82
參考文獻 References
[1] 周森, “複合材料-奈米、生物科技”, 全威出版社, 2002年.
[2] Vlot A. Historical overview. In: Fibre metal laminates; an introduction. Dordrecht: Kluwer Academic Publishers; 2001.
[3] Marissen, R., “Flight Simulation Behaviour of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, pp.261-277, 1984.
[4] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H., “Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., pp. 1081-1089, 1984.
[5] Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., pp. 1271-1279, 1987.
[6] Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, Composites, Vol. 22, No. 2, pp. 135-141, 1991.
[7] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3, pp. 361-377, 1989.
[8] Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum (ARALL) Laminates with Fatigue Cracks”, Polymer Composites, Vol. 10, No. 5, pp. 322-327, 1989.
[9] Krishnakumar S., “Fiber metal laminates: the synthesis of metals and composites”, Mater Manuf Process, Vol.9, pp. 295-354, 1994.
[10] Cortes P., Cantwell W.J., “Fracture properties of a fiber–metal laminates based on magnesium alloy”, Composites: Part B, Vol. 37, pp. 163-170, 2006.
[11] Reyes G., “Processing and characterisation of the mechanical properties of novel fibre–metal laminates”, PhD thesis, University of Liverpool, 2002.
[12] Cortes P, Cantwell WJ., “The fracture properties of a fibre–metal laminates based on magnesium alloy”, Composites: Part B, Vol. 37, pp. 163-170, 2006.
[13] Li E, Johnson WS., “An investigation into fatigue of a hybrid titanium composite laminate”, J. Compos. Technol. Res., Vol. 20, pp. 3-12, 1998.
[14] Cortes P, Cantwell WJ., “The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber–metal laminates”, J. Reinf. Plast. Compos., Vol. 23, pp. 1615-1623, 2004.
[15] Ritchie RO, Yu W, Bucci RJ., “Fatigue crack propagation in ARALL® laminates: measurement of the effect of crack-tip shielding from crack bridging”, Eng. Fract. Mech., Vol. 32, pp. 361-377, 1989.
[16] Diao, X., Lin, T., and Mai, Y. W., 1997,“Fatigue Behavior of CF/ PEEK Composites Kaminates Made From Commingled Prepreg. Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749-755.
[17] Gardin, C. H., and Frenot, M. C. L., 1992, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites, Vol.23, pp.109-116.
[18] Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23-29.
[19] Rao, K.T.V., and Ritchie, R.O.,1998, “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167-4180.
[20] Xia, K., and Langdon, T.G., 1996, “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487-5492.
[21] Telreja, R., 1987, Fatigue of Composite Materials, Technomic Publishing Co. Inc.
[22] Hwang, W., and Han, K.S., 1986, “Fatigue of Composite-Fatigue Modulus Concept and Life Prediction”, Journal of Composite Materials, Vol.20, pp.154-165.
[23] Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, “A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343-351.
[24] Miyano, Y., and Nakada, M., 1997, “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619-638.
[25] Schaff, J. R., 1997, “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158-181.
[26] Song, D. Y., 1997, “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329-335.
[27] Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87-102.
[28] Knut, O. R., and Andreas, T. E., 1996, “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A, pp.485-491.
[29] W.D. Callister Jr, Materials Science and Engineering: An Introduction, 6th ed., Wiley, New York, USA, 2003.
[30] 林秋堂, 1994,“碳纖強化鋁合金夾層板之疲勞裂縫成長機構”, 國立中山大學材料科學所博士論文.
[31] 彭聖森, 1999, “ 碳纖維/聚醚醚酮複合材料積層板溫度效應對疲勞破壞行為之影響 ”, 國立中山大學機械所碩士論文.
[32] 蔡健民, 2003, “以奈米粉體強化之高性能高分子PEEK製程與機械性質分析 ”, 國立中山大學材料科學所碩士論文.
[33] 吳俊憲, 2004, “石墨纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討”, 國立中山大學機電所碩士論文.
[34] 黃育信, 2005,“奈米複材積層板承受高溫疲勞作用其機械性能之探討”, 國立中山大學機電所碩士論文.
[35] 賴盈達, 2008, “鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討”, 國立中山大學機電所碩士論文.
[36] 劉俊吾, 2009, “鈦金屬/碳纖維/聚醚醚酮複材積層板之研製與機械性質探討”, 國立中山大學機電所碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.108.18
論文開放下載的時間是 校外不公開

Your IP address is 18.222.108.18
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code