Responsive image
博碩士論文 etd-0823110-173542 詳細資訊
Title page for etd-0823110-173542
論文名稱
Title
線性彈性體的角點和裂縫奇異模型和它們的數值解
Models of Corner and Crack Singularity of Linear Elastostatics and their Numerical Solutions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
177
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-03
繳交日期
Date of Submission
2010-08-23
關鍵字
Keywords
裂縫模型、基本解法、裂縫奇異問題、彈性力學、角點奇異問題、奇異特解問題、結合法、collocation Trefftz 方法
collocation Trefftz method, method of fundamental solutions, Trefftz method, corner singularity, crack singularity, singular particular solutions, crack models, combined method, crack tip, Elastostatics
統計
Statistics
本論文已被瀏覽 5739 次,被下載 1461
The thesis/dissertation has been browsed 5739 times, has been downloaded 1461 times.
中文摘要
線性彈性力學在角點的奇異解的性質及精確解在理論和計算上是至關重要的。在這篇論文中,我們尋求固定(位移)邊界條件,無應力(外力)邊界條件和混合型邊界條件的各種角點奇異解,並詳細探討他們的角點奇異性及提供演算法和誤差分析。我們推導出線性彈性力學的奇異解,和一些在角點和裂縫帶奇異性的新模型。有效的數值方法,如collocation Trefftz methods(CTM),基本解法(MFS),特解法(MPS)及它們的混合型,在線性彈性力學問題中,這樣的解在研究其它奇異問題的數值方法是很有用處的。本論文由三部分組成,第一部分:基本方法,第二部分:進階研究,和第三部分:位移和外力條件的混合類型。第一和第二部分已發表在[47,82]。在第一部分,我們藉由CTM 獲取高精度的解,其中首項係數在雙精度計算下可達到14(或13)的有效數字。在第二部分中我們設計了對稱和反對稱的模型,並使用基本解結合了少量特解的方法。這種相結合的方法,在計算角點(即L 形區域)是一種重要的線性彈性力學,因為在近角點時連續平滑之基本解無法使角點數值再精確,況且奇異解只有透過數值計算尋求r^(ν_K)的次方項v_K來得到。因此,只用少數幾個奇異解就可大大簡化了數值算法的複雜度。第三部分延續第一和第二部分,發展出混合位移和無外力邊界條件的模型,據我們所知,這是線性彈性力學第一次在角點附近邊界條件是混合類型所提出的特解,並報告他們的數值計算結果。本論文探討在角點的奇異性及其數值方法,並且形成線性彈性力學基本理論和進階的計算的一個系統研究。
Abstract
The singular solutions for linear elastostatics at corners are essential in both theory and computation. In this thesis, we seek new singular solutions for corners with the fixed (displacement), the free stress (traction) boundary conditions, and their mixed types, and to explore their corner singularity and provide the algorithms and error estimates in detail. The singular solutions of linear elastostatics are derived, and a number of new models of corner and crack singularity are proposed. Effective numerical methods, such as the collocation Trefftz methods (CTM), the method of fundamental solutions (MFS), the method of particular solutions (MPS) and their combinations: the so called combined method, are developed. Such solutions are useful to examine other numerical methods for singularity problems in linear elastostatics. This thesis consists of three parts, Part I: Basic approaches, Part II: Advanced topics, and Part III: Mixed types of displacement and traction conditions. Contents of Parts I and II have been published in [47,82]. In Part I, the collocation Trefftz methods are used to obtain highly accurate solutions, where the leading coefficient has 14 (or 13) significant digits by the computation with double precision. In part II, two more new models (symmetric and anti-symmetric) of interior crack singularities are proposed, for the corner and crack singularity problems, the combined methods by using many fundamental solutions, but by adding a few singular solutions are proposed. Such a kind of combined methods is significant for linear elastostatics with corners (i.e., the L-shaped domain), because the singular solutions can only be obtained by seeking the power νk of rνk numerically. Hence, only a few singular solutions used may greatly simplify the numerical algorithms; Part III is a continued study of Parts I and II, to explore mixed type of displacement and free traction boundary conditions. To our best knowledge, this is the first time to provide the particular solutions near the corner with mixed types of boundary conditions and to report their numerical computation with different boundary conditions on the same corner edge in linear elastostatics. This thesis explores corner singularity and its numerical methods, to form a systematic study of basic theory and advanced computation for linear elastostatics.
目次 Table of Contents
PART I. Basic Approaches 9
1 Linear Elastostatics Problems in 2D 11
1.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Traction Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Singular Solutions near Corners under Fixed Boundary Conditions 16
3 Model A of Crack Singularity and its Numerical Solutions 24
3.1 Model A of Crack Singularity . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Collocation Trefftz Method . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Singular Solutions near Corners under Free Stress Boundary Conditions
32
5 Model B of Crack Singularity and its Numerical Solutions 39
5.1 Model B of Crack Singularity . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6 Leading Powers ν_k of the Corner Solutions O(r^(ν_k)) 44
6.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Numerical Results for Θ = π/4 , 3π/4 . . . . . . . . . . . . . . . . . . . . . . . 45
7 Concluding Remarks (I) 49
PART II. Advanced Topics 51
8 Complex Presentations of Solutions and Stress 53
8.1 Particular Solutions near Corners . . . . . . . . . . . . . . . . . . . . . . 57
9 Models of Crack Singularity 63
10 Symmetric Model C of Crack Singularity 65
10.1 The Collocation Trefftz Method . . . . . . . . . . . . . . . . . . . . . . . 66
11 Anti-Symmetric Model D of Crack Singularity 69
11.1 Equivalence to the Complex Solutions in Piltner [62] . . . . . . . . . . . 70
12 Fundamental Solutions 73
12.1 Equivalence to Complex FS . . . . . . . . . . . . . . . . . . . . . . . . . 75
12.2 Proof of Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . . 76
13 The Combined Trefftz Method with Many FS but a Few Singular PS 80
13.1 Combined Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
13.2 Numerical Results for Model C . . . . . . . . . . . . . . . . . . . . . . . 82
13.3 Numerical Results for Model D . . . . . . . . . . . . . . . . . . . . . . . 88
13.4 A Brief Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
14 Concluding Remarks (II) 93
PART III. Mixed Tpyes of Displacement and Traction Conditions. 95
15 Singularity near Corners with Mixed Types of Boundary Conditions 97
15.1 The Powers ν_k in r^(ν_k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
15.2 Special Cases with Θ = lπ/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 103
16 Explicit Particular Solutions and Two Singularity Models 108
16.1 Explicit Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 108
16.2 Models of Crack Singularity . . . . . . . . . . . . . . . . . . . . . . . . . 111
17 Numerical Experiments 113
17.1 Collocation Trefttz Method . . . . . . . . . . . . . . . . . . . . . . . . . 113
17.2 Computed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
17.3 Conjugate Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . 122
17.4 Intensity Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
18 Mixed Types I and II 127
19 Mixed Types III and IV 140
20 Comparisons and New Discoveries 147
20.1 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
20.2 New Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
21 Numerical Experiments 152
21.1 Collocation Trefttz Method . . . . . . . . . . . . . . . . . . . . . . . . . 152
21.2 Computed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
22 Concluding Remarks (III) 165
參考文獻 References
[1] M. R. Akella and G. R. Kotamraju, Trefftz indirect method applied to nonlinear potential problems,
Eng. Anal. Bound. Elem., Vol. 24, pp. 459-465, 2000.
[2] G. Alduncin and I. Herrera, Contribution to free boundary problems using boundary elements:
Trefftz approach, Comput. Method. Appl. Mech. and Eng., Vol. 42, pp. 257-271, 1984.
[3] J. R. Berger, A Karageorghis and P. A. Martin, Stress intensity factor computation using the
method of fundamental solution: mixed-mode problems, Vol.69, pp. 469 – 483, 2007.
[4] A. Bogomolny, Fundamental solutions method for elliptc boundary value problems, SIAM J. Numer.
Anal., vol. 22, pp. 644 – 669, 1985.
[5] C. S. Chen, Y.C. Hon, and R.A. Schaback, Scientific Computing with Radial Basis Functions,
preprint, Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS
39406, USA, 2005.
[6] C. S. Chen, A. Karageorghis, Y. S. Smyrlis (Eds.), The Method of Fundamental Solutions -
A Meshless Method, Dynamic Publishers, Inc., USA, 2009.
[7] G. Chen and J. Zhou, Boundary Element Methods, Academic Press, Chapter 9, New York,
1992.
[8] J. T. Chen, Y. T. Lee and S. C. Shieh, Revisit of two classical elasticity problems by using the
Trefftz method, Eng. Anal. Bound. Elem., Vol. 33, pp. 890-895, 2009.
[9] J.T. Chen, Y.T. Lee, S.R. Yu, and S.C. Shieh, Equivalence between the Trefftz method and the
method of fundamental solution for the annular Green’s function using the addition theorem and
image concept, Engineering Analysis with Boundary Elements, Vol. 33, pp. 678-688, 2009.
[10] J.T. Chen, C.S. Wu, Y.T. Lee, and K.H. Chen, On the equivalence of the Trefftz method and
method of fundamental solutions for Laplace and biharmonic equations, Computers and Mathematics
with Applications, Vol. 53, pp. 851-879, 2007.
[11] Y. W. Chen, C. S. Liu, and J. R. Chang, Applications of the modified Trefftz method for the Laplace
equation, Eng. Anal. Bound. Elem., Vol. 33, pp. 137-146, 2009.
[12] N. Choi, Y. S. Choo, and B. C. Lee, A hybrid Trefftz plane elasticity element with drilling degrees
of freedom, Comput. Method. Appl. Mech. and Eng., Vol. 195, pp. 4095-4105, 2006.
[13] Y. H. Cui, J. Wang, M. Dhanasekar, and Q.H. Qin, Model III fracture analysis by Trefftz boundary
element method, Acta Mech Sin, Vol. 23, pp. 173 – 181, 2007.
[14] J. S. Domingues, A. Portela, and P.M.S.T. de Castro, Trefftz boundary element method applied to
fracture mechanics, Engineering Fracture Mechanics, Vol. 64, pp. 67-86, 1999.
[15] C. Y. Dong, S. H. Lo, Y. K. Cheung, and K. Y. Lee, An isotropic thin plate bending problems by
Trefftz boundary collocation method, Eng. Anal. Bound. Elem., Vol. 28, pp. 1017-1024, 2004.
[16] T. W. Drombosky, A. L. Meyer and L. Ling, Applicability of the method of fundamental solutions,
Eng. Anal. Bound. Elem., Vol. 33, pp. 637-643, 2009.
[17] J. S. Domingues, A. Portela, and P.M.S.T. de Castro, Trefttz boundary element method applied to
fracture mechanics, Engineering Fracture Mechanics, Vol. 64, pp. 67-86, 1999.
[18] M. Elliotis, G. Georgiou, and C. Xenophontos, The singular function boundary integral method for
biharmonic problems with crack singularities, Eng. Anal. Bound. Elem., Vol. 31, pp. 209-215, 2007.
[19] G. Fairweather, and A Karageorghis., The method of fundamental solutions for numerical solutions
of the biharmonic equation, J. of Comp. Physics, Vol. 69, pp. 434–459, 1987.
[20] G. Fairweather, and A. Karageorghis, The Almani method of fundamental solutions for solving
biharmonic problems, Inter. J. for Numer. Methods Engrg., Vol. 26, pp. 1665–1682, 1988.
[21] G. Fairweather, and A. Karageorghis, The simple layer potential method of fundamental solutions
for certain biharmonic problems, Inter. J. for Numer. Methods Engrg., Vol. 9, pp. 1221–1234, 1989.
[22] G. Fairweather, and A. Karageorghis, The method of fundamental solutions for elliptic boundary
value problems, Advances in Computational Mathematics, Vol. 9, pp. 69–95, 1998.
[23] J. A. T. de Freitas, Formulation of elastostatic hybrid-Trefftz stress elements, Comput. Method.
Appl. Mech. and Eng., Vol. 153, pp. 127-151, 1998.
[24] J. A. T. de Freitas and Z. Y. Ji, Hybrid-Trefftz finite element formulation for simulation of singular
stress fields, Int. J. for Numer. Meth. in Engrg., Vol. 39, pp. 281-308, 1996.
[25] J. A. T. de Freitas and Z. Y. Ji, Hybrid-Trefftz equilibrium model for crack problems, Int. J. for
Numer. Meth. in Engrg., Vol. 39, pp. 569-584, 1996.
[26] J.A. T. de Freitas, and M. Toma, Hybrid-Trefftz stress and displacement elements for axisymmetric
incompressible biphasic media, Comput. Method. Appl. Mech. and Eng., Vol. 198, pp. 2368-2390,
2009.
[27] S. Guimaraes and J. C. F. Telles, The method of fundamental solutions for fracture mechanics -
Reissner’s plate application, Eng. Anal. Bound. Elem., Vol. 33, pp. 1152-1160, 2009.
[28] H.Y. Hu and Z. C. Li, Collocation Methods for Poisson’s equation, Comput. Method. Appl. Mech.
and Eng., Vol. 195, pp. 4139-4160, 2006.
[29] H. Y. Hu, Z. C. Li and A. H.-D. Cheng, Radial basis collocation methods for elliptic boundary value
problems, Inter. J. Computers & Mathematics with Application, Vol. 50, pp.289-320, 2005.
[30] J. Jirousek and A. Venkstesh, Hybrid Trefftz plane elasticity element with p- method capabilities,
Int. J. Numer. Eng., Vol. 35, pp. 1443-1472, 1992.
[31] J. Jirousek and A. Wroblewski, T-element: State of the art and future trends, Archives of Computational
Methods in Engineering, Vol. 3, pp. 323-434, 1996.
[32] J. Jirousek, A. Wroblewski, Q. H. Qin, and X. Q. He, A family of quadrilateral hybrid-Trefftz pelements
for thick plate analysis, Comput. Method. Appl. Mech. and Eng., Vol. 127, pp. 315-344,
1995.
[33] A. Karageorghis, A. Poulikkas and J. R. Berger, Stress intensity factor computation using the
method of fundamental solutions, Comput Mech., Vol. 37, pp. 445 – 454, 2006.
[34] A. Karageorghis, S. G. Mogilevskaya and H. Stolarski, On efficient MFS algorithms using complex
representations, Chapter 5 in The Method of Fundamental Solutions - A Meshless Method
(EDs. by C. S. Chen, A. Karageorghis and Y. S. Smyrlis), Dynamic Publishers, Inc., pp. 107 –125,
Atlanta, 2008.
[35] J. A. Kolodziej and A. P. Zielinski, Boundary Collocation Techniques and their Application
in Engineering, WIT press, Southampton, Boston, 2009.
[36] V.D. Kupradze, Potential methods in elasticity, in J. N. Sneddon and R. Hill (Eds), Progress in
Solid Mechanics, Vol. III, Amsterdam, pp. 1-259, 1963.
[37] M. G. Lee, L. J. Young, Z. C. Li, and P. C. Chu, Combined Trefttz method of particular and
fundamental solutions for corner and crack singularity of linear elastostatics, Vol. 34, pp. 632 –
654, , 2010.
[38] V. M. A. Leitao, Applications of multi-region Trefftz-collocation to fracture mechanics, Eng. Anal.
Bound. Elem., Vol. 22, pp. 251-256, 1998.
[39] V. M. A. Leitao, Crack analysis using an enriched MFS domain decomposition technique, Eng.
Anal. Bound. Elem., Vol. 30, pp. 160-166, 2006.
[40] Z. C. Li, A combined method for solving elliptic problems on unbounded domains, Comput. Method.
Appl. Mech. and Eng., Vol.73, pp.191-208, 1989.
[41] Z. C. Li, Numerical Methods for Elliptic Problems with Singularities: Boundary Methods
and Nonconforming Combinations, World Scientific, Singapore, 1990.
[42] Z. C. Li, Combined Methods for Elliptic Equations with Singularities, Interfaces and
Infinities, Kluwer Academic Publishers, Boston, 1998.
[43] Z. C. Li, Combinations of method of fundamental solutions for Laplace’s equation with singularities,
Eng. Anal. Bound. Elem., Vol. 32, pp. 856–869, 2008.
[44] Z. C. Li, Method of fundamental solutions for annual shaped domains, J. Comp. and Appl. Math.,
Vol. 228, pp. 355–372, 2008.
[45] Z. C. Li, and T. D. Bui, Penalty-combined methods and their applications in solving elliptic problems
with singularities, Comput. Method. Appl. Mech. and Eng., Vol. 97, pp. 291-316, 1992.
[46] Z. C. Li, C. S. Chien, and H. T. Huang, Effective condition number for Finite difference method,
J. Comp. and Appl. Math., Vol. 198, pp. 208–235, 2007.
[47] Z. C. Li, P. C. Chu, L. J. Young and M. G. Lee, Models of corner and crack singularity of linear
elastostatics and their numerical solutions, accepted by Eng. Anal. Bound. Elem., Vol. 34, pp. 533
– 648, 2010.
[48] Z. C. Li and H. T. Huang, Study on effective condition number for collocation methods, Eng. Anal.
Bound. Elem., Vol. 32, 839 – 848, 2008.
[49] Z. C. Li and T. T. Lu and H. Y. Hu, The collocation Trefftz method for biharmonic equations with
crack singularities, Eng. Anal. Bound. Elem., Vol. 28, pp. 79 - 96, 2004.
[50] Z. C. Li, T. T. Lu, H. Y. Hu and A. H. D. Cheng, Trefftz and Collocation Methods, WIT
Press, Southampton, Boston, 2009.
[51] Z. C. Li, T. T. Lu and Y. Wei, Effective condition number of Trefftz methods for biharmonic
equations with crack singularities, Numerical Linear Algebra with Applications, Vol. 18, pp. 145 –
171, 2009.
[52] Z. C. Li, R. Mathon and P. Sermer, Boundary methods for solving elliptic problems with singularities
and interfaces, SIAM J. Numer. Anal., Vol. 24, pp. 487-498, 1987.
[53] Z. C. Li, W. C. Tsai, M. G. Lee and L. J. Young. Boundary Methods for coulping traction conditions
in linear elastostatics, Technical Report, Department of Applied Mathematics, National Sun Yat-
Sen University, Kaohsiung, Taiwan 2009.
[54] Z. C. Li, H. J. Young, H. T. Huang, Y. P. Liu and A H -D. Cheng, Comparisons of fundamental
solutions and particular solutions for Trefftz methods, accepted by Eng. Anal. Bound. Elem., 2009.
[55] K. Y. Lin and P. Tong, Singular finite element for the fracture analysis of V-notched plate, Int. J.
for Numer. Meth. in Engrg., Vol. 15, pp. 1343 – 1354, 1980.
[56] C. S. Liu, An effectively modified direct Trefftz method for 2D potential problems considering the
domain’s characteristic length, Eng. Anal. Bound. Elem., Vol. 31, pp. 983-993, 2007.
[57] X. Liu and X. Wu, Differential quadrature Trefftz method for irregular plate problems, Eng. Anal.
Bound. Elem., Vol. 33, pp. 363-367, 2009.
[58] T. T. Lu, H. Y. Hu and Z. C. Li, Highly accurate solutions of Motz’s and the cracked beam problems,
Eng. Anal. Bound. Elem., Vol. 28, pp. 1387-1403, 2004.
[59] S. G. Mogilevskaya and A. M. Linkov, Complex fundamental solutions and complex variables boundary
element method in elasticity, Computational Mechanics, Vol. 22, pp. 88 – 92, 1998.
[60] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity,
Noordhoff: Groningen, Holland, 1953.
[61] J. Petrolito, Hybrid-trefftz quadrilateral elements for thick plate analysis, Comput. Method. Appl.
Mech. and Eng., Vol. 78, pp. 331-351, 1990.
[62] R. Piltner, Recent developments in Trefftz method for finite element and boundary applications,
Advances in Engineering Software, Vol. 24, pp. 107-115, 1995.
[63] A. Poitou, M. Bouberbachene and C. Hochard, Resolution of three-dimensional Stokes fluid flows
using a Trefftz method, Comput. Method. Appl. Mech. and Eng., Vol. 190, pp. 561-578, 2000.
[64] A. Portela, M. H. Alliabadi and D. P. Rooke, The dual boundary element method: Effective implementation
for crack problems, Int. J. for Numer. Meth. in Engrg., Vol. 33, pp. 1269-1287, 1992.
[65] A. Portela and A. Charafi, Trefftz boundary element method for domains with slits, Eng. Anal.
Bound. Elem., Vol. 20, pp. 299-304, 1997.
[66] Q. H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation, Comput.
Method. Appl. Mech. and Eng., Vol. 122, , pp. 379-392, 1995.
[67] Q. H. Qin, The Trefftz Finite and Boundary Element Method, WIT Press, Southampton,
Boston, 2000.
[68] R. Schaback, Adaptive numerical solution of MFS systems, Chapter 1 in The Method of Fundamental
Solutions - A Meshless Method, Eds. C.S. Chen, A. Karageorghis, Y.S. Smyrlis,
Dynamic Publishers, Inc., pp. 1 – 27, Atlanta, 2008.
[69] R. P. Shaw, S. C. Huang, and C. X. Zhao, The embedding integral and the Trefftz method for
potential problems with partitioning, Eng. Anal. Bound. Elem., Vol. 9, pp. 83-90, 1992.
[70] Y. S. Smyrilis, The method of fundamental solutions, a weighted least-squares approach, BIT Numerical
Mathematics, Vol. 46, pp. 163–194, 2006.
[71] Y. S. Smyrilis, and A. Karageorghis, A linear least-squares MFS for certain elliptic problems,
Numerical Algorithms, Vol. 35, pp. 29–44, 2004.
[72] E. Trefftz, Konvergenz und Ritz’schen Verfahren, Proc. 2nd Int. Cong. Appl. Mech., Znrch, pp.
131–137, 1926.
[73] J. Wang, Y. H. Cui, Q. H. Qin, and J. Y. Jia, Application of Trefftz BEM to anti-plane piezoelectric
problem, , Acta Mech Sin, Vol. 19, pp. 352 – 364, 2006.
[74] M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners
of plates in extension, J. Appl. Mech, Vol. 19, pp. 526 – 528, 1952.
[75] X. Wu, H. Du, and W. Kong, Differential quadrature Trefftz method for Poisson-type problems on
irregular domains, Eng. Anal. Bound. Elem., Vol. 32, pp. 413-423, 2008.
[76] D.H. Yu, Natural Boundary Integral Method and Its Applications, Science Press/ Kluwer
Academic Publishers, Beijing/New York, 2002.
[77] A. P. Zieliski, Trefftz method: Elastic and elastoplastic problems, Comput. Method. Appl. Mech.
and Eng., Vol. 69, pp. 185-204, 1988.
[78] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, , Springer-
Verlag, New York, 1994.
[79] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer: Berlin, 2008.
[80] Z. C. Li and T. T. Lu and H. Y. Hu, The collocation Trefftz method for biharmonic equations with
crack singularities, Eng. Anal. Bound. Elem., Vol. 28, pp. 79 - 96, 2004.
[81] M. G. Lee, L. J. Young, Z.C. Li and P.C. Chu, Combined Trefftz methods of particular and fundamental
solutions for corner and crack singularity of linear elastostatics, Engineering Analysis with
Boundary Elements, Vol. 24, pp. 632 – 654, 2010.
[82] M. G. Lee, L. J. Young, Z.C. Li and P.C. Chu, Combined Trefftz methods of particular and fundamental
solutions for corner and crack singularity of linear elastostatics, Engineering Analysis with
Boundary Elements, Vol. 24, pp. 632 – 654, 2010.
[83] M. G. Lee, Z.C. Li and P.C. Chu, Corner and crack singularity of mixed type of boundary conditions
for linear elastostatics and their numerical solutions Technical report, 2010.
[84] T. C. Wang, and S. H. Chen, Advanced Fracture Mechanics in Chinese, Scientific Publishers,
Beijing, 2009.
[85] Z. C. Li, H. J. Young, H. T. Huang, Y. P. Liu and A H -D. Cheng, Comparisons of fundamental
solutions and particular solutions for Trefftz methods, Eng. Anal. Bound. Elem., Vol. 34, pp. 248
– 258, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code