Responsive image
博碩士論文 etd-0823111-085720 詳細資訊
Title page for etd-0823111-085720
論文名稱
Title
軟性電子基礎功能結構之機械與光電性質探討
Study of mechanical, optical and electrical properties of based functional structure of flexible electronics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-21
繳交日期
Date of Submission
2011-08-23
關鍵字
Keywords
氧化銦錫、奈米壓痕刮痕、圓錐形探針、氧化鋅、軟性基板
PDMS, flexiable substrate, Conical tip, ITO, nanoscratch, nanoindetation
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
軟性電子 (Flexible Electronics)屬多層膜的複合結構,當結構承受外力作用時,界面間的變形、黏附機制及透光率是值得探討地。首先以PVD (Physical Vapor Deposition)將ITO (Indium Tin Oxide)、Al (Aluminum)以及ZnO (Zinc Oxide)依序鍍於PET (Poly Ethylene Terephthalate)高分子軟性基板上。形成ZnO/ITO/PET與ZnO/Al/PET等結構,此為軟性電子中撓性傳感器的新穎多層膜結構。上述結構中的ITO/PET亦為被廣泛應用於觸控面板的基礎結構。PET基板擁有良好的光學穿透性與低的熱膨脹係數且價格便宜,但其耐熱與化學穩定性較差,本研究引進PDMS (Polydimethylsiloxane)軟性基板來驗證可行性。PDMS除了有良好的光學穿透性之外,酸鹼選擇比較PET來的高,有利於後續的酸鹼溶液製程。分析測試部分則利用週期性的外力,施加於上述軟性複合結構,並以奈米壓痕刮痕系統 (在此選用Berkovich和Conical探針,曲率半徑分別為40nm、10um)、四點探針及光譜儀,來量測薄膜的機械性質、電性及光穿透率,並比較複合結構於外力測試前後之差異。為了瞭解外力對此複合薄膜結構的影響,經由外力測試後,以刮痕試驗探討薄膜界面間的相互作用,分別比較Al與ITO對於基材與ZnO間的機械性質,了解薄膜及高分子基材界面結合性。並透過不同基材之測試比較,提供高分子基材種類上選擇的參考依據,提高軟性電子於相關領域基礎結構的發展。
Abstract
The deformation between interface, adhesion mechanism and the transparency of multi-layer flexible electronics composite were discussed. First, ITO (Indium Tin Oxide), Al (Aluminum) and ZnO (Zinc Oxide) were sputtered on a PET (Poly Ethylene Terephthalate) substrate by PVD (Physical Vapor Deposition) sequentially, to form ZnO/ITO/PET and ZnO/Al/PET which is the essential multi-layer structure in the transducer of flexible electronics. ITO/PET structure was widely applied to the touch panel. PET substrate possesses a good optical penetrability, low thermal expansion coefficient and lower price. However, the heat-resisting and chemical stability are poor. In this study, we explore the feasibility of the PDMS (Polydimethylsiloxane) substrate. It not only possesses good optical penetrability, but also exhibits higher PH selectivity than PET. In the analysis, the periodic external force was pressed on the flexible composite films to realize the difference between before and after experiment. Then the composite films were examined by nanoindentation and nanoscratch system (Berkovich and Conical probe with the radius of curvature of 20nm and 10um), four-point probe and spectrometer to measure the mechanical, electrical and optical properties, respectively. To investigate the effect of external force on these composite films, the interaction of films was discussed through external force testing by nanoscratch test.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 VII
符號說明 VIII
中文摘要 X
英文摘要 XI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的與動機 7
1-4 本文架構 9
第二章 原理 10
  2-1 薄膜沉積原理 10
     2-1-1 薄膜濺鍍系統之原理 10
2-1-2 輝光放電 11
2-1-3 射頻濺鍍 11
2-1-4 導電薄膜製程技術 12
  2-2 奈米壓痕試驗 12
2-2-1 奈米壓痕之硬度及彈性模數量測 13
2-2-2 動態壓痕之原理 17
2-2-3 黏彈性材料之複合模數建立 20
2-2-4 圓錐形探針公式修正 21
  2-3 奈米刮痕試驗 23
2-3-1 刮痕原理 23
2-3-2 薄膜磨耗變形機制 24
2-3-3 奈米刮痕模組 25
2-3-4 探針特性 29
  2-4掃描式電子顯微鏡 31
第三章 實驗方法與步驟 33
  3-1 實驗流程 33
  3-2 實驗材料與製作 34
3-2-1 可撓式透明軟性基板製作 34
3-2-2 薄膜沉積 35
  3-3實驗分析儀器 37
3-3-1 奈米壓痕刮痕量測系統 37
3-3-2 光學顯微鏡 38
3-3-3 場發射掃描式電子顯微鏡 39
3-3-4 四點探針 40
3-3-5 可見光/紫外光光譜儀 41
第四章 結果與討論 43
  4-1 四點探針之電性分析 43
  4-2 可見光/紫外光光譜儀之光學性質分析 44
  4-3 奈米壓痕試驗 47
  4-4 奈米刮痕試驗 50
4-4-1 振動測試前的刮痕試驗 50
4-4-2 振動測試後之刮痕試驗 55
  4-5 SEM與OM之觀測 60
第五章 結論與建議 71
  5-1 結論 71
  5-2 建議 73
參考文獻 74
參考文獻 References
[1] 軟性顯示器商品化,新電子科技雜誌 NO. 260。
[2] 研發電子書-膽固醇型液晶應用,科學月刊,第482期,pp. 124-132,2010年2月9日。
[3] 工業技術研究院,“微形變壓阻感測技術” ,http://www.itri.org.tw/chi/focus/focus_detail.asp?RootNodeId=010&NodeId=010&FocusNewsNBR=83。
[4] 工業技術研究院,“可撓式微型陣列超音波換能器技術”,http://www.itri.org.tw/chi/tech-transfer/04.asp?RootNodeId=040&NodeId=041&id=3562。
[5] Y. Sun and J. A. Rogers, “Inorganic semiconductors for flexible electronics,” InterScience ChemInform, Vol. 39, No. 12, pp. 1897-1916, 2007.
[6] 林楠凱,“微壓電幫浦出力模擬研究” ,國立中山大學碩博士校內論文,2007。
[7] S. W. Chung and K. T. Chau, “A new compliance control approach for traveling-wave ultrasonic motors,” Transactions on Industrial Electronics, Vol. 55, No. 1, pp. 302-311, 2008.
[8] Y. H. Zhang, C. Yang, Z. H. Zhang, H. W. Lin, L. T. Liu and T. L. Ren, “A novel pressure microsensor with 30μm thick diaphragm and meander shaped piezoresistors partially distributed on high stress bulk silicon region,” Sensors Journal, Vol. 7, No. 12, pp. 1742-1748, 2007.
[9] S. Pourkamali, G. K. Ho and F. Ayazi, “Low-impedance Vhf and Uhf capacitive silicon bulk acoustic wave resonators—Part I: concept and fabrication,” IEEE Transactions on Electron Devices, Vol. 54, No. 8, pp. 2017-2023, 2007.
[10] E. Minazara, D. Vasic, F. Costa and G. Poulin, “Piezoelectric diaphragm for vibration energy harvesting,” Ultrasonics, Vol. 44, No. 1, pp. 699-703, 2006.
[11] C. B. Williams and R. B. Yates, “Analysis of a micro-electric generator for microsystems,” IEEE Solid-State Sensors and Actuators, Vol. 1, pp. 369-372, 1995.
[12] G. H. Feng and J. C. Hung, “Optimal FOM designed piezoelectric microgenerator with energy harvesting in a wide vibration bandwidth,” 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systemans, pp. 511-514, 2007.
[13] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, D. Chen, B. C. Cai and Y. Liu, “A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting,” Chinese Physics Letters, Vol. 23, No. 3, pp. 732-734, 2006.
[14] J. H. Kim, C. J. Kang and Y. S. Kim, “A disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc,” Microelectronic Engineering, Vol. 71, No. 2, pp. 119-124, 2004.
[15] L. M. Swallow, J. K. Luo, E. Siores, I. Patel and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Electronic Journals, Smart Materials and Structures, Vol. 17, No. 2, pp. 1-7, 2008.
[16] W. J. Co, “Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD,” Thin Solid Films, Vol. 221, pp. 166-168, 1992.
[17] F. Zhu, C. H. A. Huan, K. Zhang and A. T. S. Wee, “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Films, Vol. 359, pp. 244-251, 2000.
[18] R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, “Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique,” J. Appl. Phys., Vol. 83, pp. 2139-2148, 1998.
[19] F. Zhang, C. Zhu, H. A. Huan and A. T. S. Wee, “Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method,” J. Appl. Phys., Vol. 86, pp. 974-980, 1999.
[20] L. J. Meng and M. P. dos Santos, “Properties of indium tin oxide (ITO) films prepared by r. f. reactive magnetron sputtering at different pressures,” Thin Solid Films, Vol. 303, pp. 151-160, 1997.
[21] Y. H. Young, N. Popovich, E. Chason and P. David “A study of the effect of process oxygen on stress evolution in d. c. magnetron-deposited tin-doped indium oxide,” Thin Solid Films Vol. 411, pp. 17-22, 2002.
[22] 溫志中,“ITO 透明導電膜之濺鍍技術展望” ,工業材料,166期,pp. 140-145,2000年。
[23] K. A. Sierros, N. J. Morris, K. Ramji and D. R. Cairns, “Stress–corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices,” Thin Solid Films, Vol. 517, pp. 2590-2595, 2009.
[24] K. A. Sierros and S. N. Kukureka, “Tribological investigation of thin polyester substrates for displays,” Wear, Vol. 263, pp. 992-999, 2007.
[25] Y. Leterrier, L. Medico, F. Demarco, J. -A. E. Manson, U. Betz, F. Escola, M. K. Olsson and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films, Vol. 460, pp. 156-166, 2004.
[26] P. C. Chen, G. Shen, S. Sukcharoenchoke and C. Zhou, “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon- nanotube heterogeneous films,” Applied Physics Letters, Vol. 94, pp. 1-3, 2009.
[27] C. C. White, M. R. Vanlandingham, P. L. Drzal, N. K. Chang and S. H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. I. quasi-static testing,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, pp. 1794-1811, 2005.
[28] C. C. White, M. R. Vanlandingham, P. L. Drzal, N. K. Chang and S. H. Chang, “Viscoelastic characterization of polymers using instrumented indentation. II. dynamic testing,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, pp. 1812-1824, 2005.
[29] 楊尚諭,“利用奈米壓痕試驗量測黏彈性材料性質” ,國立成功大學土木工程學系,碩士論文,2006。
[30] O. S. Heavens, “Measurement of the thickness of thin films by multiple-beam interferometry,” Proceedings of The Physical Society, Section B, Vol. 355, pp. 419-425, 1950.
[31] P. K. Mehrotra and D. T. Qunito, “Techniques for evaluating mechanical -properties of hard coatings,” Journal of Vacuum Science & Technology, Vol. 3, pp. 2401-2405, 1985.
[32] S. J. Bull and E. S. Berasetegui, “An overview of the potential of quantitative coating adhesion measurement by scratch testing,” Tribology International, Vol. 39, pp. 99-114, 2006.
[33] T. W. Wu and J. Frommer, “Micro-indentation and scanning probe microscopy to assess multilayer magnetic film damage,” Journal of Magnetism and Magnetic Materials, Vol. 219, pp. 142-152, 2000.
[34] J. Valli, “A review of adhesion test method of thin hard coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 4, pp. 3007-3014, 1986.
[35] K. L. Mitt, “Adhesion measurement of thin films,” Electrocomponent Science and Technology, Vol. 3, pp. 21-42, 1976.
[36] N. X. Randall, C. J. Schmutz, J. M. Soro, J. V. Stebut and G. Zacharie, “Novel nanoindentation method for characterising multiphase materials,” Thin Solid Films, Vol. 308, pp. 297-303, 1997.
[37] A. C. M. Yang and T. W. Wu, “Wear and friction in glassy polymers: microscratch on blends of polystyrene and poly,” Journal of Polymer Science Part B: Polymer Physics, Vol. 35, pp. 1295-1309, 1996.
[38] J. E. Greene, J. Woodhouse and M. Pestes, “A technique for detecting critical loads in the scratch test for thin-film adhesion,” Review of Scientific Instruments Vol. 45, pp. 284-289, 1974.
[39] B. Bhushan, B. K. Gupta and M. H. Azarian, “Nanoindentation, microscratch, friction and wear studies of coating for contact recording applications,” Wear, Vol. 181, pp. 743-758, 1995.
[40] B. J. Briscoe, P. D. Evans, E. Pelillo and S. K. Sinha, “Scratching maps for polymers,” Wear, Vol. 200, pp. 137-147, 1996.
[41] X. Y. Jiang, B. Lauke, W. Berckert and T. Schuller, “Numerical simulation of micro-scratch tests for coating/substrate composites,” Compos. Interfaces, Vol. 8, pp. 19-40, 2001.
[42] X. Y. Jiang, B. Lauke and T. Schuller, ”Frictional contact analysis of scratch test for elastic and elastic-plastic thing-coating/substrate materials,” Thin Solid Films, Vol. 414, pp. 63-71, 2002.
[43] P. J. Burnett and D. S. Rickerby, “The mechanical properties of wear-resistant coatings: experimental studies and interpretation of hardness,” Thin Solid Films, Vol. 148, pp. 51-65, 1987.
[44] D. Beegan, S. Chowdhury and M. T. Laugier, “Comparison between- nanoindentation and scratch test hardness (scratch hardness) values of copperthin films on oxidised silicon substrates,” Surface & Coatings Technology, Vol. 201, pp. 5804-5808, 2007.
[45] Hong Xiao 著,羅正忠,張鼎張譯,“半導體製程技術導論” ,學銘圖書有限公司,2006。
[46] 莊達人,“VLSI 製造技術” ,高立圖書有限公司,2003。
[47] R. W. Berry, P. M. Hall and M. T. Harris, “Thin film technology,” Van Nostrand Reinhold, Vol. 201, 1980.
[48] 田民波,“薄膜技術與薄膜材料” ,五南書局,2007。
[49] G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., Vol. 7, pp. 613-617, 1992.
[50] X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, Vol. 48, pp. 11-36, 2002.
[51] B. N. Lucas, W. C. Oliver and J. E. Swindeman, “Dynamics of frequency-specific, depth-sensing indentation testing,” Materials Research Society Symposia Proceedings, Vol. 522, pp. 3-14, 1998.
[52] V. Jardret, H. Zahouani, J. L. Loubet and T. G. Mathia, “Understanding and quantification of elastic and plastic deformation during a scratch test,” Wear, Vol. 218, pp. 8-14, 1998.
[53] M. Wong, G. T. Lim and A. Moyse, J. N. Reddy, H. J. Sue, “A new test methodology for evaluating scratch resistance of polymers,” Wear, Vol. 256, pp. 1214-1227, 2004.
[54] E. Moghbelli and R. L. Browning, W. J. Boo, S. F. Hahn, L. J. E. Feick, H. J. Sue, “Effect of molecular weight and thermal history on scratch behavior of polypropylene thin sheets,” Tribology International, Vol. 41, pp. 425-433, 2008.
[55] 黃惠忠,“奈米材料分析” ,滄海書局,2004。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.171.20
論文開放下載的時間是 校外不公開

Your IP address is 18.191.171.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code