Responsive image
博碩士論文 etd-0823111-140424 詳細資訊
Title page for etd-0823111-140424
論文名稱
Title
探討神經膠衍生神經滋養因子基因轉殖對於慢性坐骨神經收縮損傷的治療效果
Glial Cell Line–Derived Neurotrophic Factor Gene Transfer Exerts Protective Effect on Axons in Sciatic Nerve Following Constriction-Induced Peripheral Nerve Injury
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-08
繳交日期
Date of Submission
2011-08-23
關鍵字
Keywords
神經膠衍生神經滋養因子、血管新生、基因傳送、糖尿病、糖尿病神經性病變
Angiogenesis, Diabetes, Diabetic neuropathy, GDNF, Gene delivery
統計
Statistics
本論文已被瀏覽 5675 次,被下載 467
The thesis/dissertation has been browsed 5675 times, has been downloaded 467 times.
中文摘要
因為創傷或者疾病對周邊神經的損害會造成神經病變,並引發許多症狀,包括劇烈的疼痛,肌肉衰弱,麻痺或者器官機能失調等。導致神經病變最常見的原因與代謝失調相關,特別是糖尿病。很多糖尿病患者,尤其是血糖控制不當的一些病例,初期會影響周邊神經的末端,造成對稱性的神經痛,而且會逐漸擴散到接近中樞神經的近端。過去許多研究顯示,糖尿病所引起的神經病變與神經滋養因子的缺乏息息相關。最近一些研究發現,藉由在周邊神經進行血管內皮細胞增長因子、親神經滋養因子-3、神經生長因子,腦衍生神經滋養因子或者肝細胞生長因子等神經滋養因子的基因傳送,可以使神經營養因子持續產生並且減輕糖尿病所衍生的神經病變。然而另外一個重要的神經滋養因子,膠質細胞源性神經營養因子在糖尿病衍生的神經病變所扮演的角色則尚未被證實。因此這個研究計畫的目的主要是探討在大鼠的坐骨神經所支配的肌肉周圍進行膠質細胞源性神經營養因子基因傳送對於高血糖症或者緊迫所引起之神經損傷是否具有保護效應。首先,我們要探討在坐骨神經損傷期間組織的改變以及膠質細胞源性神經營養因子與其訊息傳遞路徑相關的接受器表現量的變化。接著,評估腺病毒載體在坐骨神經所支配的肌肉周圍進行膠質細胞源性神經營養因子基因傳送對於防止神經退化的可行性,並且研究其改善神經病變的分子機制。預期上述研究結果能夠幫助我們釐清在周邊神經傳送膠質細胞源性神經營養因子重組基因載體,是否可以作為治療糖尿病衍生神經病變或其他周邊神經病變的合適策略,並進一步作為將來臨床運用之基礎。
Abstract
Damage to peripheral nerves following trauma or disease has a number of consequences including burning pain, muscle wasting, paralysis, or organ dysfunction. The most common form of neuropathy is that associated with metabolic abnormality, notably diabetes. Many diabetics, especially those with poor blood sugar control, ultimately develop a distal symmetrical and painful neuropathy that initially affects the longest peripheral axons, but with time spreads proximally. Deficiency in neurotrophic support has been proposed to contribute to the development of diabetic neuropathy. Recently, peripheral gene delivery of vascular endothelial growth factor (VEGF), neurotrophin-3 (NT-3), NGF, BDNF or hepatocyte growth factor (HGF) has been shown to facilitate the continuous production of neurotrophic factors and alleviate the diabetic neuropathy. The role of glial cell-derived neurotrophic factor (GDNF) in the pathogenesis and therapeutics of diabetic neuropathy is not well defined. The main objectives of this research sought to inspect the protective effect of GDNF peripheral gene delivery during hyperglycemia- or constriction- induced sciatic nerve injury in rats. In present proposal, we propose to investigate the change in organization and expressions of GDNF signaling complex in the sciatic nerve following injury in the initial stage. Subsequently, the recombinant adenovirus was used gene delivery system for GDNF to evaluate the potential of intramuscular administration of gene delivery for prevent nerve degeneration, and the molecular mechanism of GDNF to ameliorate neuropathy will be clarified. The above study would enable us to test the hypothesis that the topical gene delivery might be a suitable strategy for the treatment of diabetic neuropathy and other disorders in peripheral nerve. Furthermore, the results of animal studies might be extrapolated for future clinical application.
目次 Table of Contents
Index
Abstract in Chinese……………………….....……………. i
Abstract in English………………………………………... iii
Chapter1
Peripheral Gene Transfer of Glial Cell-Derived Neurotrophic Factor Ameliorates the Neuropathic Deficits in Diabetic Rats………………………...…….………………. 1
ABSTRACT………………………………….……………...…. 2
INTRODUCTION………………………………….………….. 3
MATERIALS AND METHODS………………………………..............…………. 5
RESULTS………………………………….…….…………. 11
DISCUSSION……………………………..……………….. 18
TABLE, FIGURES AND LEGENDS……...………..…….. 23
Chapter 2
Glial Cell Line-Derived Neurotrophic Factor Gene Transfer Exerts Protective Effect on Axons in Sciatic Nerve Following Constriction-Induced Peripheral Nerve Injury……......... 36
ABSTRACT…………………………………………………. 37
INTRODUCTION……………………………….…......…… 38
MATERIALS AND METHODS……………………..……… 40
RESULTS…………………………………………….…….. 44
DISCUSSION………………………………………....……. 50
FIGURES AND LEGENDS………………………...……… 54
CONCLUSION……………………………………..………. 64
REFERENCES……………………………………….……. 65
PUBLICATION LIST………………………………….…..... 75
參考文獻 References
REFERENCES
Airaksinen, M.S., and Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3, 383-394.
Akkina, S.K., Patterson, C.L., and Wright, D.E. (2001). GDNF rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice. Exp Neurol 167, 173-182.
Anand, P. (2004). Neurotrophic factors and their receptors in human sensory neuropathies. Prog Brain Res 146, 477-492.
Anitha, M., Gondha, C., Sutliff, R., Parsadanian, A., Mwangi, S., Sitaraman, S.V., and Srinivasan, S. (2006). GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J Clin Invest 116, 344-356.
Apfel, S.C. (1999). Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 9, 393-413.
Apfel, S.C. (2002). Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 50, 393-413.
Apfel, S.C., Schwartz, S., Adornato, B.T., Freeman, R., Biton, V., Rendell, M., Vinik, A., Giuliani, M., Stevens, J.C., Barbano, R., et al. (2000). Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. Jama 284, 2215-2221.
Bar, K.J., Saldanha, G.J., Kennedy, A.J., Facer, P., Birch, R., Carlstedt, T., and Anand, P. (1998). GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport 9, 43-47.
Berns, K.I., and Giraud, C. (1995). Adenovirus and adeno-associated virus as vectors for gene therapy. Ann N Y Acad Sci 772, 95-104.
Boucher, T.J., Okuse, K., Bennett, D.L., Munson, J.B., Wood, J.N., and McMahon, S.B. (2000). Potent analgesic effects of GDNF in neuropathic pain states. Science 290, 124-127.
Boyd, J.G., and Gordon, T. (2003). Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 183, 610-619.
Cameron, N.E., Cotter, M.A., and Low, P.A. (1991). Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261, E1-8.
Charbel Issa, P., Lever, I.J., Michael, G.J., Bradbury, E.J., and Malcangio, M. (2001). Intrathecally delivered glial cell line-derived neurotrophic factor produces electrically evoked release of somatostatin in the dorsal horn of the spinal cord. J Neurochem 78, 221-229.
Chattopadhyay, M., Krisky, D., Wolfe, D., Glorioso, J.C., Mata, M., and Fink, D.J. (2005). HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Ther.
Choi-Lundberg, D.L., and Bohn, M.C. (1995). Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85, 80-88.
Chou, A.K., Yang, L.C., Wu, P.C., Wong, W.T., Liu, G.S., Chen, J.T., Howng, S.L., and Tai, M.H. (2005). Intrathecal gene delivery of glial cell line-derived neurotrophic factor ameliorated paraplegia in rats after spinal ischemia. Brain Res Mol Brain Res 133, 198-207.
Christianson, J.A., Riekhof, J.T., and Wright, D.E. (2003). Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol 179, 188-199.
Coppey, L.J., Davidson, E.P., Dunlap, J.A., Lund, D.D., and Yorek, M.A. (2000). Slowing of motor nerve conduction velocity in streptozotocin-induced diabetic rats is preceded by impaired vasodilation in arterioles that overlie the sciatic nerve. Int J Exp Diabetes Res 1, 131-143.
Courteix, C., Eschalier, A., and Lavarenne, J. (1993). Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53, 81-88.
Cummins, T.R., Black, J.A., Dib-Hajj, S.D., and Waxman, S.G. (2000). Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J Neurosci 20, 8754-8761.
Eslamboli, A. (2005). Assessment of GDNF in primate models of Parkinson's disease: comparison with human studies. Rev Neurosci 16, 303-310.
Fernyhough, P., Diemel, L.T., Hardy, J., Brewster, W.J., Mohiuddin, L., and Tomlinson, D.R. (1995). Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci 7, 1107-1110.
Fernyhough, P., Diemel, L.T., and Tomlinson, D.R. (1998). Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozotocin-diabetic rats. Diabetologia 41, 300-306.
Fox, A., Eastwood, C., Gentry, C., Manning, D., and Urban, L. (1999). Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81, 307-316.
Gill, S.S., Patel, N.K., Hotton, G.R., O'Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N., and Heywood, P. (2003). Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9, 589-595.
Gordon, T. (2009). The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 26, E3.
Goss, J.R., Goins, W.F., Lacomis, D., Mata, M., Glorioso, J.C., and Fink, D.J. (2002). Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 51, 2227-2232.
Hammarberg, H., Piehl, F., Cullheim, S., Fjell, J., Hokfelt, T., and Fried, K. (1996). GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7, 857-860.
Hao, S., Mata, M., Wolfe, D., Huang, S., Glorioso, J.C., and Fink, D.J. (2003). HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain. Mol Ther 8, 367-375.
Hase, A., Saito, F., Yamada, H., Arai, K., Shimizu, T., and Matsumura, K. (2005). Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J Neurochem 95, 537-543.
Hoke, A., Cheng, C., and Zochodne, D.W. (2000). Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11, 1651-1654.
Hoke, A., Gordon, T., Zochodne, D.W., and Sulaiman, O.A. (2002). A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol 173, 77-85.
Hoke, A., Ho, T., Crawford, T.O., LeBel, C., Hilt, D., and Griffin, J.W. (2003). Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers. J Neurosci 23, 561-567.
Hsieh, M.C., Wu, C.H., Chen, C.L., Chen, H.C., Chang, C.C., and Shin, S.J. (2003). High blood glucose and osmolality, but not high urinary glucose and osmolality, affect neuronal nitric oxide synthase expression in diabetic rat kidney. J Lab Clin Med 141, 200-209.
Iwase, T., Jung, C.G., Bae, H., Zhang, M., and Soliven, B. (2005). Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 94, 1488-1499.
Kato, N., Nemoto, K., Nakanishi, K., Morishita, R., Kaneda, Y., Uenoyama, M., Ikeda, T., and Fujikawa, K. (2005). Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 54, 846-854.
Lai, C.L., Tai, C.T., Liu, C.K., Lin, R.T., and Howng, S.L. (1997). A longitudinal study of central and peripheral nerve conduction in hypothyroid rats. J Neurol Sci 148, 139-145.
Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132.
Liu, G.S., Liu, L.F., Lin, C.J., Tseng, J.C., Chuang, M.J., Lam, H.C., Lee, J.K., Yang, L.C., Chan, J.H., Howng, S.L., et al. (2006). Gene transfer of pro-opiomelanocortin prohormone suppressed the growth and metastasis of melanoma: involvement of alpha-melanocyte-stimulating hormone-mediated inhibition of the nuclear factor kappaB/cyclooxygenase-2 pathway. Mol Pharmacol 69, 440-451.
Liu, G.S., Shi, J.Y., Lai, C.L., Hong, Y.R., Shin, S.J., Huang, H.T., Lam, H.C., Wen, Z.H., Hsu, K.S., Howng, S.L., et al. (2009). Peripheral Gene Transfer of Glial Cell-Derived Neurotrophic Factor Ameliorates the Neuropathic Deficits in Diabetic Rats. Hum Gene Ther.
Malcangio, M., Ramer, M.S., Boucher, T.J., and McMahon, S.B. (2000). Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur J Neurosci 12, 139-144.
Manabe, Y., Nagano, I., Gazi, M.S., Murakami, T., Shiote, M., Shoji, M., Kitagawa, H., and Abe, K. (2003). Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol Res 25, 195-200.
Manabe, Y., Nagano, I., Gazi, M.S., Murakami, T., Shiote, M., Shoji, M., Kitagawa, H., Setoguchi, Y., and Abe, K. (2002). Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Apoptosis 7, 329-334.
Mazzer, P.Y., Barbieri, C.H., Mazzer, N., and Fazan, V.P. (2008). Morphologic and morphometric evaluation of experimental acute crush injuries of the sciatic nerve of rats. J Neurosci Methods 173, 249-258.
Mwangi, S., Anitha, M., Mallikarjun, C., Ding, X., Hara, M., Parsadanian, A., Larsen, C.P., Thule, P., Sitaraman, S.V., Anania, F., et al. (2008). Glial Cell Line-Derived Neurotrophic Factor Increases beta-Cell Mass and Improves Glucose Tolerance. Gastroenterology 134, 727-737.
Nagano, M., Sakai, A., Takahashi, N., Umino, M., Yoshioka, K., and Suzuki, H. (2003). Decreased expression of glial cell line-derived neurotrophic factor signaling in rat models of neuropathic pain. Br J Pharmacol 140, 1252-1260.
Ogun-Muyiwa, P., Helliwell, R., McIntyre, P., and Winter, J. (1999). Glial cell line derived neurotrophic factor (GDNF) regulates VR1 and substance P in cultured sensory neurons. Neuroreport 10, 2107-2111.
Oppenheim, R.W., Houenou, L.J., Johnson, J.E., Lin, L.F., Li, L., Lo, A.C., Newsome, A.L., Prevette, D.M., and Wang, S. (1995). Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344-346.
Paratcha, G., and Ledda, F. (2008). GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 31, 384-391.
Paratcha, G., Ledda, F., and Ibanez, C.F. (2003). The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113, 867-879.
Pezet, S., Krzyzanowska, A., Wong, L.F., Grist, J., Mazarakis, N.D., Georgievska, B., and McMahon, S.B. (2006). Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol Ther 13, 1101-1109.
Pittenger, G., and Vinik, A. (2003). Nerve growth factor and diabetic neuropathy. Exp Diabesity Res 4, 271-285.
Pradat, P.F., Finiels, F., Kennel, P., Naimi, S., Orsini, C., Delaere, P., Revah, F., and Mallet, J. (2001). Partial prevention of cisplatin-induced neuropathy by electroporation-mediated nonviral gene transfer. Hum Gene Ther 12, 367-375.
Ramer, M.S., Bradbury, E.J., Michael, G.J., Lever, I.J., and McMahon, S.B. (2003). Glial cell line-derived neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and motoneurons in vivo. Eur J Neurosci 18, 2713-2721.
Ramer, M.S., Priestley, J.V., and McMahon, S.B. (2000). Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312-316.
Rochkind, S., Filmar, G., Kluger, Y., and Alon, M. (2007). Microsurgical management of penetrating peripheral nerve injuries: pre, intra- and postoperative analysis and results. Acta Neurochir Suppl 100, 21-24.
Sagot, Y., Tan, S.A., Hammang, J.P., Aebischer, P., and Kato, A.C. (1996). GDNF slows loss of motoneurons but not axonal degeneration or premature death of pmn/pmn mice. J Neurosci 16, 2335-2341.
Said, G. (2007). Focal and multifocal diabetic neuropathies. Arq Neuropsiquiatr 65, 1272-1278.
Sakai, A., Asada, M., Seno, N., and Suzuki, H. (2008). Involvement of neural cell adhesion molecule signaling in glial cell line-derived neurotrophic factor-induced analgesia in a rat model of neuropathic pain. Pain 137, 378-388.
Sariola, H., and Saarma, M. (2003). Novel functions and signalling pathways for GDNF. J Cell Sci 116, 3855-3862.
Schmidt, R.E., Grabau, G.G., and Yip, H.K. (1986). Retrograde axonal transport of [125I]nerve growth factor in ileal mesenteric nerves in vitro: effect of streptozotocin diabetes. Brain Res 378, 325-336.
Siemionow, M., and Demir, Y. (2004). Diabetic neuropathy: pathogenesis and treatment. J Reconstr Microsurg 20, 241-252.
Skoff, A.M., Resta, C., Swamydas, M., and Adler, J.E. (2003). Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) regulate substance P release in adult spinal sensory neurons. Neurochem Res 28, 847-854.
Springer, J.E., Mu, X., Bergmann, L.W., and Trojanowski, J.Q. (1994). Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127, 167-170.
Tai, M.H., Cheng, H., Wu, J.P., Liu, Y.L., Lin, P.R., Kuo, J.S., Tseng, C.J., and Tzeng, S.F. (2003). Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Exp Neurol 183, 508-515.
Terenghi, G. (1999). Peripheral nerve regeneration and neurotrophic factors. J Anat 194 ( Pt 1), 1-14.
Trupp, M., Belluardo, N., Funakoshi, H., and Ibanez, C.F. (1997). Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17, 3554-3567.
Trupp, M., Ryden, M., Jornvall, H., Funakoshi, H., Timmusk, T., Arenas, E., and Ibanez, C.F. (1995). Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130, 137-148.
Vinik, A.I., Park, T.S., Stansberry, K.B., and Pittenger, G.L. (2000). Diabetic neuropathies. Diabetologia 43, 957-973.
Voyvodic, J.T. (1989). Target size regulates calibre and myelination of sympathetic axons. Nature 342, 430-433.
Wang, C.Y., Yang, F., He, X., Chow, A., Du, J., Russell, J.T., and Lu, B. (2001). Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release. Neuron 32, 99-112.
Wang, C.Y., Yang, F., He, X.P., Je, H.S., Zhou, J.Z., Eckermann, K., Kawamura, D., Feng, L., Shen, L., and Lu, B. (2002a). Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. J Biol Chem 277, 10614-10625.
Wang, L.J., Lu, Y.Y., Muramatsu, S., Ikeguchi, K., Fujimoto, K., Okada, T., Mizukami, H., Matsushita, T., Hanazono, Y., Kume, A., et al. (2002b). Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22, 6920-6928.
Yamamoto, M., Sobue, G., Yamamoto, K., Terao, S., and Mitsuma, T. (1996). Expression of glial cell line-derived growth factor mRNA in the spinal cord and muscle in amyotrophic lateral sclerosis. Neurosci Lett 204, 117-120.
Yan, Q., Matheson, C., and Lopez, O.T. (1995). In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341-344.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code