Responsive image
博碩士論文 etd-0823111-190150 詳細資訊
Title page for etd-0823111-190150
論文名稱
Title
摻雜矽氮化銦薄膜之載子釋放機制研究
The carrier relaxation of Si doped InN thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-30
繳交日期
Date of Submission
2011-08-23
關鍵字
Keywords
衰減率、光致螢光光譜、時間解析探測-激發(TRPP)、摻雜矽的氮化銦、氮化銦
InN, time-resolved pump-probe, Si-doped InN, decay rate, PL
統計
Statistics
本論文已被瀏覽 5650 次,被下載 734
The thesis/dissertation has been browsed 5650 times, has been downloaded 734 times.
中文摘要
本論文主要利用時間解析探測-激發(TRPP)光譜來研究室溫下的氮化銦和未摻雜矽的氮化銦的激發載子能量釋放方式,首先利用光致螢光光譜去確定其基本特性,最後用TRPP光譜去確定其載子被激發後釋放能量的機制。從螢光光譜實驗中,氮化銦能隙大小約為0.7eV,隨著濃度增加往高能量移動,另外光致半高寬隨著濃度增加變寬。最後TRPP光譜中知道,Shockley-Read-Hall (SRH)衰減率隨著摻雜濃度增加變大,樣品室溫下高激發濃度時以無SRH非輻射結合為主,而在低濃度時以雜質缺陷(SRH)為主,另外隨著樣品背景濃度增加雜質缺陷的影響也跟著增加,使得Auger效應減弱。
Abstract
Ultrafast time-resolved pump-probe (TRPP) apparatus has been applied to study the carrier dynamics of Si-doped InN thin films grown buffer by molecular beam expitaxy with and without a low-temperature growth GaN buffer layer. The peak of the PL has been found to increase from 0.7 to 0.8 eV with the back ground density. The total decay rates as a function of the delay time were obtained by the density-dependent TRPP peak intensity and the time-resolved TRPP signals. The total decay rates were interpreted as the sum of radiative and nonradiative recombination. The Shockley-Read-Hall decay rate derived from the TRPP signal at low photoexccitation density was found to increase with the doping density. At low concentration, the Auger recombination is not effective. The dominant recombination mechanism at room temperature is the Shockely-Read-Hall recombination.
目次 Table of Contents
目錄
摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章 導論 1
1.1氮化銦發展史 1
1.2文獻探討 2
第二章 實驗架構 5
2.1 激發-探測原理 5
2.2實驗裝置 9
2.3鎖相放大器 11
第三章 載子動力學 16
3.1激發電子能量釋放過程 16
3.2電子與電洞的結合機制 17
3.3載子衰減率 19
3.4激發載子濃度與光束大小計算 21
第四章 樣品分析與討論 22
4.1樣品簡介與霍爾量測 22
4.2 光致螢光量測與分析 25
4.3 時間解析激發-探測(TRPP)實驗與分析 32
4.4 τ_2 分析 38
4.5 τ_1 分析 40
4.6 載子濃度衰減率(D)分析 43
第五章 結論 50
參考資料 52

圖目錄
圖2-1 pump-probe 簡單原理示意圖(a)沒有激發光或探測光光程差較激發光短 (b)探測光光程差較長 5
圖2-2 Time-resolved pump-probe 示意圖 7
圖2-3 Pump-probe 光路圖 9
圖2-4 beamsplitters 工作原理 9
圖2-5確認移動平台是否平行探測光 (a)檢測移動平台是否平行 (b)探測光經針孔後隨移動平台強度變化 10
圖2-6 鎖相放大器原理 11
圖2-7鎖相放大器應用示意圖 (a) 斬光器方波訊號 (b) 激發光被斬光器調制後(c)探測光訊號 12
圖2-8斬光器放置位置 圓點為將斬光器置於激發光光路上 方塊將斬光器至於探測光光路上後將激發光開啟和關閉的訊後相減 13
圖2-9基本PL實驗架設 14
圖3-1載子在半導體內躍遷示意圖27 16
圖3-2載子結合機制 18
圖3-3總載子濃度與時間變化關係圖 20
圖4-1 (a)M系列成長模型 (b) A系列成長模型 22
圖4-2樣品摻雜溫度與遷移率和載子濃度關係 23
圖4-3樣品摻雜溫度與遷移率和載子濃度關係35 24
圖4-4 M8059變溫光致螢光光譜 26
圖4-5 M8053變溫光致螢光光譜 27
圖4-6 M8057變溫光致螢光光譜 27
圖4-7 M8056變溫光致螢光光譜 28
圖4-8 M8054變溫光致螢光光譜 28
圖4-9全部樣品低溫螢光強度歸一化後比較峰值位置 29
圖4-10 M系列樣品背景電子濃度與遷移率和低溫螢光峰值位置 29
圖4-11峰值位置與遷移率關係35 30
圖4-12低溫PL半高寬 30
圖4-13零點位置判定(a)兩道雷射產生第三道光中間為404 nm 兩邊808 nm(b)TRPP光譜與零點位置比較 32
圖4-14 M8059 TRPP光譜 34
圖4-15 M8053 TRPP光譜 35
圖4-16 M8057 TRPP光譜 35
圖4-17 M8056 TRPP光譜 36
圖4-18 M8054 TRPP光譜 36
圖4-19 A112893 TRPP光譜 37
圖4-20 A112993 TRPP光譜 37
圖4-21 1/τ2與濃度關係其中,線為A、B、C擬合結果,星號為發光輻射結合 衰減率 38
圖4-22 1/τ1與濃度關係,線為A、B、C擬合結果 40
圖4-23 M8059 雙指數衰減示意圖 虛線為τ1指數率退 41
圖4-24將圖4-22 畫成log-log scale 線為y=y0na擬合結果 42
圖4-25 M8059 (a) 200 mW TRPP光譜 (b)不同激發功率強度對激發濃度關係 44
圖4-26 M8059載子衰退率 44
圖4-27所有樣品激發光為200 mW時的載子衰退率,線為新分析方法擬合結果 45
圖4-28無SRH影響的非輻射結合率 47
圖4-29 M系列不同樣品 SRH和Auger係數 47

表目錄
表格1-1氮化銦發展史 2
表格1-2不同實驗室Pump-Probe結果簡述 3
表格4-1樣品霍爾量測基本資料由杜老師實驗室提供 22
表格4-2 M系列樣品應力計算結果36 25
表格4-3所有樣品低溫螢光半高寬 31
表格4-4 1/τ2 之A、B、C比較 39
表格4-5 1/τ1與濃度關係其中實線為A、B、C擬合結果 40
表格4-6 y=y0
參考文獻 References

參考資料

1
S. Strite and H. Morkoc, “GaN, AIN, and InN: A review”, J.Vac. Sci. Technol. B 10 ,
1237 (1992)
2
V. W. L. Chin, T. L. Tansely, T. Osotchan, “Electron mobllities in gallium, indium,
and aluminum nitrldes”, J. Appl. Phys. 75, 7365 (1994)
3
H. J. Hovel and J. J. Cuomo, “Electrical and Optical Properties of rf‐Sputtered GaN
and InN”, Appl. Phys. Lett. 20, 71 (1972)
4
C. P. Foley and T. L. Tansley, “Pseudopotential band structure of indium nitride”
Phys. Rev. B 33, 1430 (1986)
5
C. P. Foley and T. L. Tansley, “Infrared absorption in indium nitride” J. Appl. Phys.
60, 2092 (1986)
6
A. Wakahara and A. Yoshida, “Heteroepltaxlal growth of InN by microwave ..
excited metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 54, 709 (1989)
7
A. Wakahara, T. Tsuchiya, and A. Yoshida, “Epitaxial growth of indium nitride”, J.
Cryst. Growth, 99, 385 (1990)
8
A. Yamamoto, T. Tanaka, K. Koide, and A. Hashimoto, “Improved electrical
properties for metalorganic vapour phase epitaxial InN films”, Phys. Status Solidi A
194, 510 (2002)
9
T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa and
S. Ohoya, “Physical properties of InN with the band gap energy of 1.1 eV”, J.
Crystal Growth, 227-228, 481 (2001)
10
J.Wu, W. walukiewicz, K. M. Yu, J. W. Auger III, E. E. Haller, H. Lu, W. J. Schaff,
Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, 53


11
A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review
on growth, characterization and properties”, J. Appl. Phys. 94, 2779 (2003)
12
S. S. Prabhu and A. S. Vengurlekar, “Dynamics of the pump-probe reflectivity
spectra in GaAs and GaN”, J. Appl. Phys. 95, 12 (2004)
13
H. Ye, G. W. Wicks and P. M. Fauchet, “Hot electron relaxation time in GaN”, Appl.
Phys. Lett. 74, 5 (1999)
14
D. Zanato, N. Balkan1, B. K. Ridley, G. Hill, and W. J. Schaff, “ Hot electron
cooling rates via the emission of LO-phonons in InN”, Semicond. Sci. Technol. 19,
1024 (2004)
15
J. W. Pomeroy , M. Kuball , H. Lu, W. J. Schaff , X. Wang, and A. Yoshikawa,
“ Phonon lifetimes and phonon decay in InN”, Appl. Phys. Lett. 86, 223501 (2005)
16
Y.C. Wen, C.Y. Chen, C.H. Shen, S. Gwo, C.K. Sun, “ Ultrafast carrier thermaliza-
tion in InN”, Appl. Phys. Lett. 89, 232114 (2006)
17
T.R. Tsai, C.F. Chang, and S. Gwo, “ Ultrafast hot electron relaxation time anomaly
in InN epitaxial films”, Appl. Phys. Lett. 90, 252111 (2007)
18
T.R. Tsai, C.Y. Chang, C.W. Kuo, J.S. Hwang, T.Y. Lin and S. Gwo,“ Spectral
dependence of time-resolved photoreflectance of InN epitaxial films”, Appl. Phys.
Lett. 95, 142108 (2009)
19
F. Chen, A. N. Cartwright, H. Lu and William J. Schaff,“ Time-resolved spectrosc-
opy of recombination and relaxation dynamicsin InN”, Appl. Phys. Lett. 83, 4984,
(2003)
20
R. Ascázubi, I. Wilkea, S. Cho, H. Lu and William J. Schaff, “Ultrafast recombinan-
tion in Si-doped InN”, Appl. Phys. Lett. 88, 112111 (2006)
21
K. Fukunaga, M. Hashimoto, H. Kunugita, J. Kamimura, A.Kikuchi, K. Kishino and
K. Ema, “Energy and density dependent dynamics of photoexcited carriers in InN
films”, Appl. Phys. Lett. 95, 232114 (2009)
22
F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Temperature dependence of
carrier lifetimes in InN”, Phys. Stat. Sol. (a) 202, 768 (2005)
54


23
S.Z. Sun, Y.C. Wen, S.H. Guol, H.M. Lee, S. Gwo, and C.K. Su n, “Observation of
femtosecond carrier thermalization time in indium nitride”, J. Appl. Phys. 103,
123513 (2008)
24
Y.E. Su, Y.C. Wen, H. M. Lee, S. Gwo, and C.K. Sun, “Observation of sub-100
femtosecond electron cooling time in InN”, Appl. Phys. Lett. 96, 052108 (2010)
25
M. J. Connelly, “Theoretical calculations of the carrier induced refractive index
change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical
amplifiers”, Appl. Phys. Lett. 93, 181111 (2008)
26
S. Wu, P. Geiser, J. Jun, and J. Karpinski, D. Wang and Roman Sobolewski,
“Time-resolved intervalley transitions in GaN single crystals”, J. Appl. Phys. 101,
043701 (2007)
27
Stanford Research System, “ Model SR850 DSP Lock-in Amplifier” Operation
manucel (1992)
28
J. Shah,“ Ultrafast Spectroscopy of Semiconductors and Semiconductor
Nanostructures”, Springer (1998)
29盧書楷, “砷化銦/砷化鎵多層堆疊量子點載子鬆弛之研究”, 國立中山大學物理
系研究所碩士論文(2006)
30
E.F.Schubert, “ Light-Emitting Diode ”, Cambridge University Press (2006)
31
W. Shockley, and T. Read, “Statistics of the recombinations of holes and electrons”,
Phys. Rev. 87 835 (1952)
32
R. N. Hall, “Electron-hole recombination in germanium”, Phys. Rev. 87 387 (1952)
33
H. C. Liu, C. H. Hsu, W. C. Chou, W. K. Chen, and W. H. Chang, “Recombination
lifetimes in InN films studied by time-resolved excitation-correlation spectroscopy”,
Phys. Rev. B 80, 193203 (2009)
34
F. L. Pedrotti, S.J., L. M. Pedrotti, L. M. Pedrotti, “Introduction To Optics”, Third
Edition, Pearson Prentice Hall, (2007)


35
M. Higashiwaki, T. Matsui,“Estimation of band-gap energy of intrinsic InN from
photoluminescence properties of undoped and Si-doped InN films grown by
plasma-assisted molecular-beam epitaxy”, J. Cryst. Growth. 269, 162–166 (2004)
36
S. M. Sze, “Semiconductor Devices ”, Second Edition, John Wiley and sons (2002)
37張佑齡,“以電漿輔助分子束磊晶系統成長不同系摻雜 C 面氮化銦及拉曼光譜之
研究” 國立中山大學物理系研究所碩士論文 (2008)
38
J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III,and E. E. Haller, “Unusual
properties of the fundamental band gap of InN”, Appl. Phys. Lett. 80, 3967(2002)
39
Y.P. Varshni, “Temperature dependence of the energy gap in semiconductors”,
Physica (Amsterdam). 34, 149 (1967)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code