Responsive image
博碩士論文 etd-0823111-210112 詳細資訊
Title page for etd-0823111-210112
論文名稱
Title
在正交分頻多工系統中使用新的可變動星座圖延伸架構來降低峰均值功率比之研究
A New Active Constellation Extension Scheme for PAPR Reduction in OFDM Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2011-08-23
關鍵字
Keywords
峰均值功率比、正交分頻多工、凸型最佳化、可變動星座圖延伸
Convex Optimization, Orthogonal Frequency Division Multiplexing, Peak-to-Average Power Ratio, Active Constellation Extension
統計
Statistics
本論文已被瀏覽 5680 次,被下載 692
The thesis/dissertation has been browsed 5680 times, has been downloaded 692 times.
中文摘要
在正交分頻多工系統(Orthogonal Frequency Division Multiplexing, OFDM)中,過高的峰均值功率比(Peak-to-Average Power Ratio, PAPR)是一個嚴重的問題。在眾多文獻所提出的解法方法之中,可變動星座圖延伸(Active Constellation Extension, ACE)架構有著優異的表現。傳統ACE提出了兩個架構,其中ACE-SGP(Smart Gradient-Project, SGP)在第一次疊代後即可大幅地降低PAPR,然而ACE-SGP架構並沒有解出最佳解,我們發現架構的問題型式符合凸型(Convex)最佳化問題的定義,因此可藉由Convex最佳化演算法找出最佳解使得PAPR最小。我們提出了兩個低複雜度ACE架構,並證明其符合Convex最佳化問題的型式,可藉由最佳化演算法求出最佳解。雖然提出的架構相對於傳統的ACE-SGP必須花費額外的傳送功率和求解Convex最佳化問題的複雜度,但由模擬結果得知在降低PAPR方面有著不少的改善。
Abstract
High peak-to-average power ratio (PAPR) is a serious drawback in orthogonal frequency division multiplexing (OFDM) systems. Various methods have been proposed to reduce PAPR, active constellation extension (ACE) scheme has excellent performance. There are two schemes were proposed in traditional ACE, the one of which is ACE-Smart Gradient-Project (SGP) which can significantly reduce PAPR through first iteration. In fact, optimal solution is not obtained in ACE-SGP, we find the scheme can be formulated as convex optimization problem, that is, we can find out optimal solution to minimize PAPR by convex optimization algorithm. Two proposed schemes are based on two low complexity schemes, respectively, and they were proved to satisfy convex optimization problem. Although the power of transmission and complexity of optimization algorithm in the proposed schemes are higher than that of the traditional ACE-SGP scheme, but proposed schemes has proper improvement in PAPR reduction.
目次 Table of Contents
論文審定書 ....................................................................................................................... i
誌謝 ................................................................................................................................. ii
中文摘要 ......................................................................................................................... iii
Abstract ............................................................................................................................ iv
目錄 ................................................................................................................................. v
圖目錄 ............................................................................................................................ vii
表目錄 ............................................................................................................................. ix
第一章 導論 .................................................................................................................... 1
1.1 研究動機 ........................................................................................................... 2
1.2 論文架構 ........................................................................................................... 2
第二章 正交分頻多工系統與峰均值功率比 ................................................................ 3
2.1 正交分頻多工系統的架構 ............................................................................... 3
2.2 正交分頻多工訊號的峰均值功率比 ............................................................... 7
第三章 常見的降低PAPR的方法................................................................................. 9
3.1常見的降低PAPR方法簡介........................................................................... 10
3.2 Krongold和Jones提出的ACE架構 .............................................................. 11
第四章 提出的ACE架構所應用到的文獻 ................................................................ 18
4.1 完美序列/轉換向量 ........................................................................................ 18
4.2 訊號產生器/修正型訊號產生器 .................................................................... 21
4.3 完美序列與訊號產生器/修正型訊號產生器的複雜度分析 ........................ 25
第五章 提出的ACE架構並用Convex最佳化求解 .................................................. 27
5.1 提出的ACE架構 ........................................................................................... 27
5.1.1 提出的架構一(Proposed Scheme I, PS I) ............................................ 27
5.1.2 提出的架構二(Proposed Scheme II, PS II) ......................................... 29
5.2 證明提出的架構可由Convex最佳化求解 ................................................... 29
第六章 PAPR效能與功率消耗的模擬分析................................................................ 39
第七章 結論 .................................................................................................................. 45
參考文獻 ........................................................................................................................ 46
中英對照表 .................................................................................................................... 52
縮寫對照表 .................................................................................................................... 58
參考文獻 References
[1] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[2] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std. 802.16-2004, Oct. 2004.
[3] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[4] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[5] R. O’Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. The Sixth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC’95), Toronto, Canada, Sep. 1995, vol. 1, pp. 71–75.
[6] J. Armstrong, “Peak-to-average reduction for OFDM by repeated clipping and frequency domain filtering,” IET Electron. Lett., vol. 38, no. 5, pp. 246–247, Feb 2002.
[7] X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131–133, May 1998.
[8] X. Huang, J. H. Lu, J. L. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in Peak-to-Average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2030–2039, Nov. 2004.
[9] T. Jiang and G. Zhu, “Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 342–346, Sep. 2004.
[10] S. A. Aburakhia, E. F. Badran, and D. A. E. Mohamed, “Linear companding transform for the reduction of peak-to-average power ratio OFDM signals,” IEEE Trans. Broadcast., vol. 55, no. 1, pp. 155–160, Mar. 2009.
[11] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes with low peak-to-average power ratios,” IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 1974–1987, Sep. 2000.
[12] K. Yang and S. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE Commun. Lett., vol. 7, no. 4, pp. 174–176, Apr. 2003.
[13] Y. Xin and I. J. Fair, “Peak-to-average power ratio reduction of an OFDM signal using guided scrambling coding,” in Proc. IEEE Global Telecommunications Conference (IEEE GLOBECOM’03), San Francisco, USA, Dec. 2003, vol. 4, pp. 2390–2394.
[14] S. S. Yoo, S. Yoon, S. Y. Kim, and I. Song, “A novel PAPR reduction scheme for OFDM systems: selective mapping of partial tones (SMOPT),” IEEE Trans. Consum. Electron., vol. 52, no. 1, pp. 40–43, Feb. 2006.
[15] M. Breiling, S. H. Muller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239–241, June 2001.
[16] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804–808, Dec. 2007.
[17] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93–96, Feb. 2005.
[18] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941–944, Nov. 2009.
[19] S.-H. Wang, J.-C. Xie, and C.-P. Li, “A Low-Complexity PAPR Reduction Scheme for OFDMA Uplink Systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242–1251, Apr. 2011.
[20] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[21] S.-H. Wang, C.-P. Li, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM Systems,” revised in IEEE Trans. Commun. (Paper number:TCOM-TPS-10-0613.R1)
[22] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp. 333–338, Sep. 1999.
[23] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM system,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161–1166, Mar. 2008.
[24] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135–137, Apr. 2001.
[25] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83–86, Mar. 2006.
[26] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680–683, Oct. 2007.
[27] J. Tellado, “Peak to average power reduction for multicarrier modulation,” Ph.D. dissertation, Stanford University, 2000.
[28] T. Wattanasuwakull and W. Benjapolakul, “PAPR reduction for OFDM transmission by using a method of tone reservation and tone injection,” in Proc. 2005 Fifth International Conf. Information, Communications, and Signal Processing (ICICS 2005), Bangkok, Thailand, Dec. 2005, pp. 273–277.
[29] L. Wang and C. Tellambura, “Analysis of clipping noise and tone-reservation algorithms for peak reduction in OFDM systems,” IEEE Trans. Veh. Technol., vol. 57, no. 3, pp. 1675–1694, May 2008.
[30] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258–268, Sep. 2003.
[31] A. Saul, “Generalized active constellation extension for peak reduction in OFDM systems,” in Proc. 2005 IEEE International Conference on. Communications (IEEE ICC 2005), Seoul, Korea, Sep. 2005, vol. 3, pp. 1974–1979.
[32] A. Aggarwal and T. H. Meng, “Minimizing the peak-to-average power ratio of OFDM signals using convex optimization,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3099–3110, Aug. 2006.
[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004, ch. 3.
[34] S. Ohno and G. B. Giannakis, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2113–2123, Dec. 2002.
[35] C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May 2001.
[36] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, July 1972.
[37] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming (web page and software), Oct. 2008 [Online]. Available: http://www.stanford.edu/~boyd/cvx/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code