Responsive image
博碩士論文 etd-0823112-145009 詳細資訊
Title page for etd-0823112-145009
論文名稱
Title
胰臟癌中 CD133 結合 EGFR 並促進其活化
The Role of CD133 to Bind to EGFR and Modulate Its Activation in Pancreatic Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-31
繳交日期
Date of Submission
2012-08-23
關鍵字
Keywords
免疫沉澱、胰臟癌幹細胞、CD133、細胞膜表面分子標記
Cancer stem cells, CD133, Epidermal Growth Factor Receptor, MAPK/ ERK pathways
統計
Statistics
本論文已被瀏覽 5721 次,被下載 0
The thesis/dissertation has been browsed 5721 times, has been downloaded 0 times.
中文摘要
胰臟癌具有高度致命性,它是由一群不同性質的癌細胞所組成的,其中有所謂的”胰臟癌幹細胞”。它是已經發生變異並具有對化療抗藥性及電療低敏感度之族群。最近癌幹細胞已變成是治癒癌症的新標的。在很多癌症包括胰臟癌、腦癌及乳癌,CD133被認為是癌幹細胞之重要的細胞膜表面分子標記(marker)。然而,與CD133相關的信號網絡(signal network)還未完全了解。我們初步的研究結果顯示將胰臟 癌細胞株高表達(overexpression) CD133時,會造成癌細胞生長速度加快,細胞群落形成(colony formation)變大,附著及移轉的能力增強。由我們的信號網絡研究資料發現:高表達CD133會促進EGFR的活化及PI3K/Akt路徑的磷酸化。但這些發現需要進一步確認。並需要在活體動物的異種移植(xenograft)研究中証實CD133的高表達較容易形成癌症腫瘤。而這些新鮮的檢體,我們可拿來進行共同免疫沉澱(co-immunoprecipitation)及蛋白質體學實驗。我們初步的證據更進一步的顯示: CD133可與EGFR呈物理上的接觸(physical association)。CD133的高表達可增加EGFR蛋白質的量及其磷酸化。若此重要發現可經過活體動物異種移植(xenograft)的新鮮癌症檢體再次證實,那CD133的信號網絡與EGFR的活化、蛋白質的磷酸化將確認有所連結,而這點可能與 CD133高表達時 (即所謂的”胰臟癌幹細胞”),腫瘤會快速發展與其化療抗藥性有關。因此,本實驗的主要目的是利用免疫沉澱(immunoprecipitation LC MS/MS)等等的一些蛋白質體學方法來找尋與CD133 結合的蛋白質激酶(protein kinases ;task 2),並了解高表達CD133 時相關的調控機制。最後我們想在活體動物實驗中證實,CD133 的高表達會產生對化療(Gemcitabine and 5-FU)的抗藥性。本實驗結果將可讓我們找到更有效的分子標的治療藥物用來對抗”胰臟癌幹細胞”;以避免胰臟癌的復發。
Abstract
Most of tumor consists of a heterogeneous population of tumor cells among a tumor initiating and chemo or radiation resistant subpopulation, called cancer stem cells (CSCs), which have become increasingly important new anticancer targets. CD133 has been recently identified as a prominent marker for CSCs in pancreatic and other tumors; however, the signaling cascade of this cancer stem cell marker has not been fully explored. This study shows increased cell proliferation, colony formation, adhesion, and migration following CD133 overexpression in pancreatic ductal adenocarcinoma (PDAC) cells. Signaling studies have indicated that CD133 overexpression increases the epidermal growth factor receptor (EGFR) activation and phosphorylation of PI3K/Akt and MAPK/ ERK pathways. An in vivo xenograft study confirmed that overexpression of CD133 has higher tumorgentic ability than control mice. Molecular studies have found that CD133 physically associates with EGFR and promotes EGFR protein level and its phosphorlyation, which might be critical for PDAC tumor progression and chemoresistance. The data also showed that CD133 overexpression suppresses the EGF mRNA expression, which may imply that CD133 induces EGFR activation through an EGF ligand-independent process. The findings here point to an important mechanism of action for CD133 in PDAC. The EGFR inhibitor has potent anti-CD133 activity, and the current results have important implications for developing targeting CD133 activity as a novel cancer therapy strategy and the inhibitor approach presented here identifies the inhibition of CD133 activity by the EGFR inhibitor and sheds light on developing a new cancer therapeutic that functions by targeting CD133 activity in human cancer.
目次 Table of Contents
Contents

Abstract in Chinese ------------------------------------------- iii
Abstract in English -------------------------------------------- iv
Introduction ------------------------------------------------------ 1
Materials and Methods --------------------------------------- 5
Results ---------------------------------------------------------- 11
Discussion ------------------------------------------------------ 21
Figures and Tables ------------------------------------------- 27
References ------------------------------------------------------ 35
參考文獻 References
1. Sohn TA. The molecular genetics of pancreatic ductal carcinoma. Minerva Chir 2002;57(5):561-74.
2. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer 2002;2(12):897-909.
3. Shi C, Hong SM, Lim P, et al. KRAS2 mutations in human pancreatic acinar-ductal metaplastic lesions are limited to those with PanIN: implications for the human pancreatic cancer cell of origin. Mol Cancer Res 2009;7(2):230-6.
4. Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 1997;57(15):3126-30.
5. Sener SF, Fremgen A, Menck HR, Winchester DP. Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985-1995, using the National Cancer Database. J Am Coll Surg 1999;189(1):1-7.
6. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5(3):219-34.
7. Reya T. Regulation of hematopoietic stem cell self-renewal. Recent Prog Horm Res 2003;58:283-95.
8. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105-11.
9. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3(12):895-902.
10. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730-7.
11. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100(7):3983-8.
12. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004;432(7015):396-401.
13. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004;64(19):7011-21.
14. Corbeil D, Fargeas CA, Huttner WB. Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 2001;285(4):939-44.
15. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120(7):1444-50.
16. Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132(7):2542-56.
17. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63(18):5821-8.
18. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11(1):69-82.
19. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008;8:48.
20. Thon N, Damianoff K, Hegermann J, et al. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci;43(1):51-9.
21. Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007;18(5):460-6.
22. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007;67(14):6796-805.
23. Burkert J, Otto WR, Wright NA. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 2008;214(5):564-73.
24. Christensen K, Schroder HD, Kristensen BW. CD133+ niches and single cells in glioblastoma have different phenotypes. J Neurooncol;104(1):129-43.
25. Tzeng CW, Frolov A, Frolova N, et al. EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients. J Surg Res 2007;143(1):20-6.
26. Gao F, Ponte JF, Levy M, et al. hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biol Ther 2009;8(7):548-56.
27. Papageorgis P, Cheng K, Ozturk S, et al. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res;71(3):998-1008.
28. Akagi T, Sasai K, Hanafusa H. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci U S A 2003;100(23):13567-72.
29. Bardeesy N, Cheng KH, Berger JH, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev 2006;20(22):3130-46.
30. Cheng KH, Ponte JF, Thiagalingam S. Elucidation of epigenetic inactivation of SMAD8 in cancer using targeted expressed gene display. Cancer Res 2004;64(5):1639-46.
31. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int 2007;7:9.
32. Beug H. Breast cancer stem cells: eradication by differentiation therapy? Cell 2009;138(4):623-5.
33. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008;15(3):504-14.
34. Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25(12):1696-708.
35. Lu B, Chiou SH, Deutsch E, Lorico A. Cancer stem cells. J Oncol;2011:269437.
36. Schwarz-Cruz-y-Celis A, Melendez-Zajgla J. Cancer stem cells. Rev Invest Clin;63(2):179-86.
37. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5(4):275-84.
38. Kim M, Turnquist H, Jackson J, et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 2002;8(1):22-8.
39. Bi CL, Fang JS, Chen FH, Wang YJ, Wu J. [Chemoresistance of CD133(+) tumor stem cells from human brain glioma]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2007;32(4):568-73.
40. Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth and self-renewal through neurotensin / IL-8 / CXCL1 signaling. Hepatology.
41. Moriyama T, Ohuchida K, Mizumoto K, et al. Enhanced cell migration and invasion of CD133+ pancreatic cancer cells cocultured with pancreatic stromal cells. Cancer;116(14):3357-68.
42. Welsch T, Keleg S, Bergmann F, Degrate L, Bauer S, Schmidt J. Comparative analysis of tumorbiology and CD133 positivity in primary and recurrent pancreatic ductal adenocarcinoma. Clin Exp Metastasis 2009;26(7):701-11.
43. Woo T, Okudela K, Mitsui H, et al. Prognostic value of CD133 expression in stage I lung adenocarcinomas. Int J Clin Exp Pathol;4(1):32-42.
44. Yamanaka Y, Friess H, Kobrin MS, Buchler M, Beger HG, Korc M. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993;13(3):565-9.
45. Matsuda K, Idezawa T, You XJ, Kothari NH, Fan H, Korc M. Multiple mitogenic pathways in pancreatic cancer cells are blocked by a truncated epidermal growth factor receptor. Cancer Res 2002;62(19):5611-7.
46. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004;59(2 Suppl):21-6.
47. Toulany M, Dittmann K, Kruger M, Baumann M, Rodemann HP. Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol 2005;76(2):143-50.
48. Ulivi P, Arienti C, Amadori D, et al. Role of RAF/MEK/ERK pathway, p-STAT-3 and Mcl-1 in sorafenib activity in human pancreatic cancer cell lines. J Cell Physiol 2009;220(1):214-21.
49. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem 2008;283(4):1882-92.
50. Stanger BZ, Stiles B, Lauwers GY, et al. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 2005;8(3):185-95.
51. Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 2003;39(10):1348-54.
52. Baselga J. The EGFR as a target for anticancer therapy--focus on cetuximab. Eur J Cancer 2001;37 Suppl 4:S16-22.
53. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN, Nutt CL. Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol 2006;65(12):1181-8.
54. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008;27(12):1749-58.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.171.235
論文開放下載的時間是 校外不公開

Your IP address is 18.191.171.235
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code