Responsive image
博碩士論文 etd-0823112-151325 詳細資訊
Title page for etd-0823112-151325
論文名稱
Title
以離地生物復育技術處理受石油碳氫化合物污染之土壤
Application of ex-situ bioremediation to remediate petroleum-hydrocarbon contaminated soils
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-25
繳交日期
Date of Submission
2012-08-23
關鍵字
Keywords
離地生物復育、變性梯度膠體電泳、土耕法、泥漿相、石油碳氫化合物
bioremediation, denaturing gradient gel electrophoresis (DGGE), slurry-phase, landfarming, total petroleum hydrocarbon (TPH)
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
台灣土壤及地下水受油品污染日益嚴重,污染案例不勝枚舉,油品污染一般污染途徑以地下儲油槽(underground storage tanks, USTs)受腐蝕而破裂產生漏油、油管破裂、地面油品意外洩漏、及廢油品任意傾倒或掩埋等。本研究利用不同操作及控制條件下,以泥漿相生物批次實驗,評估受潤滑油及柴油污染土壤之可行性研究,並以現地微生物或加入其他添加物(氯化汞、營養鹽、重油分解菌、生物污泥、蛇木屑及熟成廚餘堆肥),進一步觀察不同影響因子對於土壤中微生物分解總石油碳氫化合物(total petroleum hydrocarbons, TPH)之效率,並以土耕法結合生物堆法應用整治受潤滑油及柴油污染土壤之場址。泥漿相批次試驗結果顯示,熟成廚餘堆肥組之TPH濃度最快降至法規標準以下;TPH去除率熟成廚餘堆肥(80.5%) >生物污泥(78.6%) >重油分解菌(77.4%) >蛇木屑(75.1%) >營養鹽 (73.3%) >現地微生物(66.1%) >氯化汞(1.6%);雖然熟成廚餘堆肥去除效率及能力較佳,但模場因成本考量下而選擇以污泥作為菌種添加,較具方便性及經濟性。在模場試驗結果顯示有無添加污泥總去除效率相差約20%,其中以添加2車次污泥之去除效率最佳,且符合法規標準,由此可知,添加生物污泥可有效提升降解污染土方土壤中TPH濃度。由變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)所進行之菌相分析結果顯示,泥漿相批次實驗環境中的微生物依所添加之添加物不同,其微生物菌相有顯著的變化;生物污泥及熟成廚餘經定序結果可知,所含微生物具有重油、柴油及MTBE之分解能力。泥漿相與模場試驗之定序結果,經文獻比對可整理出9組具有相關性之基因序列組,其具有降解石油碳氫化合物之微生物包含Pseudomonas sp.、Pseudoxanthomonas sp.、Rhodocyclaceae bacterium、Variovorax sp.、Acidovorax sp.、Leptothrix sp.、Alcaligenaceae bacterium與Burkholderia sp.。由本研究結果可知,部分原生種微生物長期生長於,受石油碳氫化合物污染之土壤,經馴化後可成為優勢菌種,有些則是污泥裡含有降解污染物的微生物,故利用額外添加具有降解TPH污染物之微生物,亦可達到一定成效。本研究成果將有助於擬定一套有效及降低處理成本之離地生物復育技術,提供受TPH污染場址整治之參考。
Abstract
Leaking of petroleum products from storage tanks is a commonly found cause of soil contamination. Among those petroleum products, diesel-oil contaminated soils are more difficult to treat compared to gasoline (a more volatile petroleum product). With the growing interest in environmental remediation, various approaches have been proposed for treating petroleum-hydrocarbon (PH) contaminated sites. Given that it is often not possible to remove the released oil or remediate the site completely within a short period of time, using the in situ remedial technology, soil excavation followed by more cost-effective technology should be applied to accelerate the efficiency of site cleanup. In the first-part of this study, laboratory degradation experiments were conducted to determine the optimal operational conditions to effectively and economically bioremediate diesel-fuel contaminated soils. In the second part of this study, a combined full-scale landfarming and biopile system was operated to cleanup diesel fuel-contaminated soils. In the laboratory study, except of frequent soil tilling for air replacement, different additives were added in the laboratory bioreactors to enhance the total petroleum hydrocarbon (TPH) removal efficiency. The additives included nutrients, TPH-degrading bacteria, activated sludge, fern chips, and kitchen waste composts. PH-degrading bacteria were isolated from PH-contaminated soils and activated sludge was collected from a wastewater treatment plant containing PH in the influent. PH-degrading bacteria and sludge were added to increase the microbial population and diversity. Fern chips and kitchen waste composts were added to increase the soil permeability. Results indicate that the bioreactor with kitchen waste compost addition had the highest TPH removal rate. The observed TPH-removal ratios for the compost, activated sludge, PH-degrading bacteria, fern chips, nutrients, TPH-degrading bacteria addition, and control (with HgCl2 addition) groups were 80.5%, 78.6%, 77.4%, 75.1%, 73.3%, 66.1%, and 1.6% respectively. In the field study, activated sludge was selected as the additive from the engineering point of view. With the addition of activated sludge, an increase of 20% was observed for TPH removal ratio. Results from the denaturing gradient gel electrophoresis (DGGE) tests show that the detected PH-degrading bacteria in the activated sludge included the following: Pseudomonas sp., Pseudoxanthomonas sp., Rhodocyclaceae bacterium, Variovorax sp., Acidovorax sp., Leptothrix sp., Alcaligenaceae bacterium, and Burkholderia sp. Some of these bacteria became dominant species in the field after a long-term operation, which was beneficial to the soil bioremediation. Results indicate that the in situ bioremediation has the potential to be developed into an environmentally and economically acceptable remediation technology.
目次 Table of Contents
謝 誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 土壤及地下水油品污染來源 3
2.2 潤滑油與柴油之性質及影響 4
2.2.1 潤滑油與柴油之成份及基本性質 4
2.2.2 潤滑油分類及作用 6
2.2.3 潤滑油與柴油對環境及人體健康危害 7
2.3 石油碳氫化合物污染型態及傳輸方式 8
2.4 受石油碳氫化合物污染土壤整治技術與應用趨勢 12
2.5土壤離地生物復育方法介紹 15
2.5.1 固相處理 15
2.5.2 泥漿相處理 28
2.6 油分解菌 40
2.6.1 微生物與石油碳氫化合物之關係 40
2.6.2 生物分解污染物機制 42
2.6.3影響微生物生長的主要因子 43
2.6.4降解碳氫化合物之微生物種類 46
2.7土壤污染案例介紹 49
第三章 實驗方法與步驟 56
3.1 實驗架構與流程 56
3.2 實驗材料 57
3.2.1 實驗藥品 57
3.2.2 實驗器材 58
3.3 實驗設計與組別 62
3.3.1 不同添加物於泥漿相微生物降解試驗 62
3.4 模場試驗 65
3.4.1 污染場址地理位置 65
3.4.2 生物復育場址介紹 65
3.5 實驗分析方法 69
3.5.1 土壤基本分析 69
3.5.2 TPH測定 72
3.5.3 土壤中總菌落數測定 72
3.5.4 分子生物技術 73
第四章 結果與討論 79
4.1 實驗土壤基本性質 79
4.2 添加不同添加物於泥漿相對生物降解之影響 80
4.2.1 生物復育過程中pH及EC變化 80
4.2.2 土壤中TPH濃度變化趨勢 83
4.2.3 以一階反應探討各組TPH降解速率與去除率 87
4.2.4 討論TPH降解過程中總菌落數變化 91
4.3生物復育模場試驗 95
4.3.1 土壤中TPH變化趨勢 95
4.3.2 模場總生菌數變化趨勢 98
4.3.3 模場TPH圖譜之判視 100
4.3.4 模場土壤氣體檢測 103
4.4 批次實驗及模場試驗之菌相變化 105
4.5 批次實驗及模場之菌種鑑定 107
4.6 受石油碳氫化合物污染土壤整治流程與成本 125
4.6.1 土耕法與生物堆法操作建議流程圖 125
4.6.2 污染場址整治成本評估 128
第五章 結論與建議 131
5.1 結論 131
5.2 建議 133
參考文獻 134
參考文獻 References
Aghamiri, S.F., Kabiri, K. and Emtiazi, G., (2011) “A novel approach for optimization of crude oil bioremediation in soil by the taguchi method”, Journal of Petroleum and Environmental Biotechnology, 2(2), 110.
Aislabie, J., McLeod, M. and Fraser, R., (1998) “Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica”, Applied Microbiology And Biotechnology, 49(2), 210-214.
Aldrett, S., Bonner, J.S., McDonalds, T.J., Millers, M.A., Autenrieth, R.L., (1997) “Degradation of crude oil enhanced by commercial microbials cultures” American Petroleum Insitute, Washington, DC, pp.995-996.
Alexander, M., (1999) “Biodegradation and bioremediation”, Academic Press, San Diego, CA, 453.
Atlas, R.M. and Bartha, R.S., (1973) “Biodegradation of oil slicks using oleophilic fertilizers”, Environment. Science. Technology., 7(36), 538-541.
Atlas, R.M., (1981) “Microbial degradation of petroleum hydrocarbons: an environmental perspective”,. Microbiological. Reviews, 45(1), 180-209.
Atlas, R.M., (1995) “Petroleum biodegradation and oil spill bioremediation”, Marine Pollution Bulletin, 31(4-12), 178-182.
ATSDR, (2002) “Toxicological profile for arsenic (update)”, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia
Baheri, H. and Meysami P., (2001) “Feasibility of fungi bioaugmentation in composting a flare pit soil”, Journal of hazardous materials, 89(2-3), 279-286.
Balbani, J.I., Baldani, V.L.D., Seldin, L. and Dobereiner, J., (1986) “Characterization of Herbaspirilum seropedicae gen. nov.sp. nov, a root-associated nitrogen fixing bacterium”, International Journal of Systematic Bacteriology, 36(1), 86-93.
Bamforth, S.M. and Singleton, I., (2005) “Review: bioremediation of polycyclic aromatic hydrocarbons:current knowledge and future directions”, Journal of Chemical Technology and Biotechnology, 80(7), 723-736.
Bartha,R. and Atlas, R.M.,(1977) “The microbiology of aquatic oil spills”, Advances in Applied Microbiology, 22, 225-266.
Bastida, F., Rosell, M., Franchini, A.G., Seifert, J., Finsterbusch, S., Jehmlich, N., Jechalke, S., Bergen, M.V. and Richnow, H.H., (2010) “Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach”FEMS Microbiology Ecology, 73(2), 370-384.
Bedient, P.B., Rifai, H.S., Newell, C.J., (1999) “Groundwater water contamination: transport and remediation (2nd Ed) ”, Prentice-Hall, Inc.
Beesley, L., Moreno-Jimenez, E. and Gomez-Eyles, J.L., (2010) “Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil”, Environmental Pollution, 158(6) 2282-2287.
Behzadian, M., Kazemzadeh, R.B., Albadvi, A. and Aghdasi, M., (2010) “PROMETHEE: A comprehensive literature review on methodologies and applications”, European Journal of Operational Research,200(1), 198-215.
Belinda, A., Thompson, W., Davies, N.W., Goldsworthy, P.M., Riddle, M.J., Snape, I. and Stark, J.S., (2006) “Environmental toxicology and chemistry”, 25(2), 356-366.
Bento, F.M., Camargo, F.A.O., Okeke, B.C. and Frankenberger, W.T., (2005) “Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation”, Bioresource Technology, 96(9), 1049-1055.
Berends J. and Kloeg D., (1986) “Landfarming van met PAKs, minerale olie of koolwaterstoffen verontreinigde grond. In: Syllabus Symposium Biologische Grondreiniging, Rotterdam”, NIRIA, den Haag, The Netherlands.
Bertoldi, M.D. and Zucconi, F., (1987) “Compost specifications for the production and characterization of compost from municipal solid waste”, CSA Illumina.
Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanest, A.H. and Dorostkar, V., (2011) “Landfarming process effects on biochemical properties of petroleum-contaminated soils”, Soil and Sediment Contamination, 20(2), 234-248.
Boopathy R., (2000) “Factors limiting bioremediation technologies”, Bioresource Technology, 74(1), 63-67.
Borden, R.C. and Kao, C.M., (1992) “Evaluation of groundwater extraction for remediation of petroleum contaminated aquifers”, Water Environ Res., 64(1), 28-36.
Borja, J., Taleon, D.M., Auresenia, J., Gallardo, S., (2005) “Polychlorinated biphenyls and their biodegradation”, Process Biochemistry, 40(6), 1999-2013.
Bossert, I. and Bartha, R., (1984) “The fate of petroleum in soil ecosystems In: Atlas RM (Ed.)”, Petroleum Microbiology Macmillan Publishing Company, 435-476.
Boulding, J.R., (1996a) “USEPA Environmental Engineerin Sourcebook”, Chelsea, MI.
Boulding, J.R., (1996b) “EPA Environmental Assessment Sourcebook”, Ann Arbor Press.
Brassington, K.J., Hough, R.L., Paton, G.I., Semple, K.T., Risdon, G., Crossley, J., Lethbridge, G., Hay, I., Askari, K. and Pollard, S.J.T., (2007) “Weathered hydrocarbons: a risk management primer”, Critical Reviews In Environmental Science And Technology, 37(3), 199-232.
Britton, R.S., Videla, L.A., Rachamin, G., Okuno, F. and Israel, Y., (1984) “Effect of age on metabolic tolerance and hepatomegaly following chronic ethanol administration”, Alcoholism: Clinical and Experimental Research, 8(6), 528-534.
Britton, R.S., Videla, L.A., Rachamin, G., Okuno, F. and Israel, Y., (1984) “Effect of age on metabolic tolerance and hepatomegaly following chronic ethanol administration”, Alcoholism-Clinical And Experimental Research, 8(6), 528-53.
Brusseau, M.L., DiFilippo, E.L., Marble, J.C. and Oostrom, M., (2008) “Mass-removal and mass-flux-reduction behavior for idealized source zones with hydraulically poorly-accessible immiscible liquid”, Chemosphere, 71(8), 1511-1521.
Calabrese, E. J., Kostecki, P. T. and Gilbert, C. E., (1987) “How much soil do children eat? Emerging consideration for environmental health risk assessment”, Comments Toxicol. 1(3–4), 229-241.
Cassidy, D.P. and Hudak, A.J., (2001) “Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor”, Journal of Hazardous Materials, 84(2-3), 253-264.
Cassidy, D.P. and Hudak, A.J., (2001) “Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor”, Journal of Hazardous Materials, 84(2-3), 253-64.
Cavalca, L., Dell’Amico, E. and Andreoni, V., (2004) “Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes”, Applied Microbiology and Biotechnology, 64(4), 576-587.
Cavalca, L., Di Gennaro, P., Colombo, M., Andreoni, A., Bernasconi, S. and Bestetti, G., (2000) “Distribution of catabolic pathways in some degrading bacteria of a subsurface polluted soil”, Research In Microbiology, 151(10), 877-887.
Chaineau, C. H., Rougeux, G., Yepremian, C. and Oudot, J., (2005) “Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil” Soil Biology and Biochemistry 37(8), 1490-1497.
Cheng-Hui, X. and Yokota, A., (2006) “Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. ”, International Journal of System and Evolutionary Microbiology, 56(3), 619-624.
Chiou, C.T., Kile, D.E., Brinton, T.I. and Malcolm, R.L., (1988) “Sorption of vapors of some organic liquids on soil humic-acid and its relation to partitioning of organic-compounds in soil organic-matter”, Environmental Science and Technology, 22(3), 298-303.
Compant, S., Clement, C. and Sessitsch, A., (2010) “Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization”, Soil Biology and Biochemistry, 42(5), 669-678.
Cookson, J.T., (1995) “Bioremediation engineering: design and application”, McGraw-Hill, Inc, New York, 241-250.
Cuypers C, Clemens R, Grotenhuis T, and Rulkens W., (2001) “Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments”, Soil and Sediment Contamination, 10(5), 459-482.
Cuypers C, Grotenhuis T, Joziasse J, and Rulkens W., (2000) “Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments”, Environmental science & technology, 34(10), 2057-2063.
Cuypers, C., Clemens, R., Grotenhuis, T. and Rulkens, W., (2001) “Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments”, Soil and Sediment Contamination, 10(5), 459-482.
Das, K., and Mukherjee, A.K., (2007) “Crude petroleum-oil biodegradation efficiency of Bacillus subtilisand Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India”, Bioresource Technology, 98(7), 1339-1345.
Das, S., Pan, D., Bera, A. K., Rana, T., Bandyopadhyay, S., De, S., Das, S.K., Bhattacharya, D. and Bandyopadhyay, S.K., (2010) “Stress inducible heat shock protein 70: a potent molecular and toxicological signature inarsenic exposed broiler chickens”, Molecular Biology, 37(7), 3151-3155.
Deeb, R.A., Scow, K.M. and Lisa, A.C., (2000) “Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions”, Biodegradation, 11(2-3), 171-186.
Del’Arco J.P. and DeFranc’a F.P., (2001) “Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment”, Environmental Pollution, 112(3), 515-519.
Desai, C., Pathak, H. and Madamwar, D., (2010) “Advances in molecular and omics technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites”, Bioresource Technology, 101(6), 1558-1569.
Diplock, E.E., Mardlin, D.P., Killham, K.S. and Paton, G.I., (2009) “Predicting bioremediation of hydrocarbons: Laboratory to field scale”, Environmental Pollution, 157(6), 1831-1840.
Dunbar, J., Ticknor, L.O. and Kuske, C.R., (2000) “Assessment of microbial diversity in four southwestern United States soil by 16S rRNA gene terminal restriction fragment analysis”, Applied and Environmental Microbiology, 66(7), 2943-2950.
Fagerlund, F.F., Niemi, A. and Oden, M., (2006) “Comparison of relative permeability–fluid saturation–capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media”, Advances in Water Resources, 29(11), 1705-1730.
Fayad, N.M. and Overton, E., (1995) “A unique biodegradation pattern of the oil spilled during the 1991 Gulf War”, Marine Pollution Bulletin, 30(4), 239-246.
Fedorak, P.M. and Westlake, D.W.S., (1981) “Degradation of aromatics and saturates in crude oil by soil enrichments”, Water, Air, and Soil Pollution 16(3), 367-375.
Ferguson, S.H., Franzmann, P.D., Revill A.T., Snape, I. and Rayner, J.L., (2003) “The effect of nitrogen and water on mineralisation of Hydrocarbons in diesel-contaminated terrestrial Antrarctic soil”, Cold Regions Science and Technology, 37(2), 197-212.
Fetter, C.W., (1998) “Contaminant hydrogeology”, Department of Geology University of Wisconsin-oshkosh.
Fiorenza, S. and Rifai, H.S., (2003) “Rewiew of MTBE Biodegradation and Bioremediation”, Bioremediation Journal, 7(1), 1-35.
Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koosand, R.D. and Semenza, G.L., (1996) “Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1”, Molecular and Aellulae Biology, 16(9), 4604-4613.
Frigaard,N. and Dahl, C., (2009) “Sulfur metabolism in phototrophic sulfur bacteria”, Advances in Microbial Physiology, 54, 103-200.
Futamata, H., Harayama, S. and Watanabe, K., (2001) “Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria”, Applied Microbiology And Biotechnology, 55(2), 248-253.
Gajalakshmia, S. and Abbasia, S.A., (2008) “Solid waste management by composting: state of the art”, Critical Reviews in Environmental Science and Technology, 38(5), 311-400.
Galperin, Y., Kaplan, I.R., (2011) “Review of microbial processes in the near-surface environment and their implications for the chemical fingerprinting of hydrocarbon fuels”, Environmental Forensics, 12(3), 236-252.
Gao, D., Du, L., Yang, J., Wu, W.M. and Liang, H., (2010) “A critical review of the application of white rot fungus to environmental pollution control”, Critical Reviews in Biotechnology, 30(1), 70-77
Garcia-Martinez, A.M., Diaz, A., Tejada, M., Bautista, J., Rodriguez, B., Santa Maria, C., Revilla, E. and Parrado, J., (2010) “Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: Effects on soil biochemistry and biodiversity”, Process Biochemistry, 45(7), 1127-1133.
Geerdink, M.J.; vanLoosdrecht, M.C.M. and Luyben, K.C.A.M., (1996) “Biodegradability of diesel oil”, Biodegradation, 7(1), 73-81.
Gerhardt, K.E., Huang, X.D., Glick, B.R. and Greenberg, B.M., (2009) “Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges”, Plant Science, 176(1), 20–30.
Gestel, K.V., Merhaert , J., Swingsb, J., Coosemansa, J. and Ryckeboera, J., (2003) “Bioremediation of diesel oil contaiminated soil by composting with biowaste”, Environmental Pollution, 125(3), 361-368.
Ghazali, F.M., Rahman, R.N.Z.A., Salleh, A.B. and Basri, M., (2004) “Biodegradation of Hydrocarbons in soil by microbial consortium”, International Biodeterioration and Biodegradation, 54(1), 61-67.
Giasi C.I., and Morelli, A., (2003) “A landfarming application technique used as environmental remediation for coal oil pollution”, Journal of Environmental Science and Health, 38(8), 1557-1568.
Girotti, S., Ferri, E.N., Fumo, M.G. and Maiolini, E., (2008) “Monitoring of environmental pollutants by bioluminescent bacteria”, Analytica Chimica Acta, 608(1), 2-29.
Gogoi, B.K., Dutta, N.N., Goswami, P. and Mohan, T.R.K., (2002), “A case study of bioremediation of petroleum-hydrocarbon contaiminated soil at a crude oil spill site”, Advances in Environmental Research, 767-782.
Greene, A.C., Patel, B.K.C., and Sheehy, A.J., (1997) “Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and Iron-reducing bacterium isolated from a petroleum reservoir”, (1997) International Journal of Systematic and Evolutionary Microbiology, 47(2), 505-509.
Huesemann, M.H., (1995) “Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils”, Environmental Science and Technology, 29(1), 7-18.
Huling, S.G., and Pivetz, B.E. (2006). In-situ chemical oxidation. EPA/600/R-06/072. Cincinnati, Ohio: United States Environmental Protection Agency.
Hur, J.M. and Park, J.A., (2003) “Effect of sewage sludge mix ratio on the biodegradation of diesel-oil in a contaminated soil composting”, Korean Journal of Chemical Engineering, 20(2), 307-314
Inbakandan, D., Murthy, P.S., Venkatesan, R. and Khan, S.A., (2010) “16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull”, Biofouling, 26(8), 893-899.
International Technology and Regulatory Cooperation (ITRC) (2001). “Technical and Regulatory Guidance for In-Situ Chemical Oxidation of Contaminated Soil and Groundwater”, Http://www.itrcweb.org/
Jackson, W.A. and Pardue, J.H.,( 1999) “Potential for enhancement of biodegradation of crude oil in louisiana salt marshes using nutrient amendments”, Water, Air, and Soil Pollution, 109(1-4), 343-355.
James, E.K., Gyaneshwar, P., Mathan, N., Barraquio, Q.L., Reddy, P.M., Iannetta, P.P.M., Olivares, F.L. and Ladha, J.K., (2002) “Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67”, Molecular Plant-Microbe Interactions, 15(9), 894-906.
Jellali, S., Benremita, H., Muntze, P., Razakarisoa, O. and Schafe, G., (2003) “A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces”, Journal of Contaminant Hydrology, 60(1-2), 31-53.
Johnsen, A.R. and Karlson, U., (2004) “Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons”, Applied Microbiology and Biotechnology, 63(4), 452-459.
Jones, R., (2010) “Environmental contamination associated with a marine landfill (‘seafill’) beside a coral reef”, Marine Pollution Bulletin, 60(11), 1993-2006.
Jorgensen, K.S., Puustinen, J. and Suortti, A.M., (2000) “Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles”, Environment Pollution 107(2), 245-254.
Joseph, G.L. and Colwell,R.R., (1990) “Microbial degradation of hydrocarbons in the environment”, Microbiological Reviews, 54, 305-315.
Kao, C.M., Prosser, R.N., (1999) “Influence of aquifer bioecochemical distribution on BTEX biodegradation under aerobic/anaerobic conditions”, Chinese Institute of Environmental Engineering, 9(3), 187-197.
Kaplan, C.W. and Kitts, C.L., (2003) “Bacterial succession in a petroleum land treatment unit”, Applied and Environmental Microbiology, 70(3), 1777-1786.
Katsivela, E., Moore, E.R.B., Maroukli1, D., Strompl, C., Pieper, D. and Kalogerakis, N., (2005) “Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites”, Biodegradation, 16(2), 169-180.
Kim, S.J., Kweon, O., Jones, R.C., Edmondson, R.D. and Cerniglia, C.E., (2008) “Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1”, Biodegradation, 19(6), 859-881.
Kleinsteuber, S., Schleinitz, K.M., Breitfeld, J., Harms, H., Richnow, H.H. and Vogt, C., (2008) “Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions”, Fems Microbiology Ecology, 66(1), 143-157.
Kristensen, A.H., Henriksen, K., Mortensen, L., Scow, K.M., Moldrup, P., (2010) “Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface”, Vadose Zone Journal, 9(1), 137-147.
Kuo, Y.C., Wang, S.Y., Kao, C.M., Chen, C.W and Sung, W.P., (2012) “Using enhanced landfarming system to remediate diesel oil-contaminated soils”, Applied Mechanics and Materials, 121-126, 554-558.
LaGrega, M.D., Buckingham, P.L. and Evans, J.C., (1994) “Hazardous waste management”, McGraw-Hill Series in Water Resources and Environmental engineering, 1178.
Lechner, U., Brodkorb, D., Geyer, R., Hause, G., Hartig, C., Auling, G., Fayolle-Guichard, F., Piveteau, P., Muller, R.H. and Rohwerder, T., (2007) “Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium”, International Journal of Systematic and Evolutionary Microbiology, 57(6), 1295-1303.
Lee, S.H., Oh, B.I. and Kim, J., (2008) “Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity”, Bioresource Technology, 99(7), 2578-2587.
Li, P., Sun, T., Sagnitti, F., Zhang, C., Zhang, H., Xiong, X., Allinson, G., Ma, X. and Allinson, M., (2002) “Field-scale bioremediation of soil contaminated with crude oil”, Environment Engineering Science, 19(5), 277-289.
Liu, L., Jiang, C.Y., Liu, X.Y., Wu, J.F., Han, J.G. and Liu, S.J., (2007) “Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants withComamonas sp. Strain CNB-1”, Environmental Microbiology, 9(2), 465-473.
Liu, W.T., Linning, K.D., Nakamura, K., Mino, T., Matsuo, T., and Forney, L.J., (2000) “Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content”, Microbiology, 146(5), 1099-1107.
Lysnes, K., Bodtker, G., Torsvik, T., Bjornestad, E., and Sunde, E., (2009) “Microbial response to reinjection of produced water in an oil reservoir”, Applied Microbiology and Biotechnology, 83(6), 1143-1157.
Ma, Y., Zhang, J.Y. and Wong M.H., (2003) “Microbial activity during composting of anthracene-contaminated soil”, Chemosphere, 52(9), 1505-1513.
Madigan, M.T., (1986) “Chromatium-tepidum sp-nov, a thermophilic photosynthetic bacterium of the family chromatiaceae”, International Journal of Systematic Bacteriology, 36(2), 222-227.
Mahro, B. and Kastner, M., (1993) “The microbial degradation of polycyclic aromatic hydrocarbons in soils and sediments”, Bio-Engineering, 9, 50-58.
Man, Y.B., Sun, X.L., Zhao, Y.G., Lopez, B.N., Chung, S.S., Wu,S.C., Cheung, K.C. and Wong, M.H., (2010) “Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city”, Environment International, 36(6), 570-576.
Marsh, T.L., Saxman, P., Cole, J. and Tiedje, J., (2000) “Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis”, Applied and Environmental Microbiology, 66(8), 3616-3620.
Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D. and Verstraete, W., (2008) “How to get more out of molecular fingerprints: practical tools for microbial ecology”, Environmental Microbiology, 10(6), 1571-1581
Meintanis, C., Chalkou, K.I., Kormas, K.A. and Karagouni, A.D., (2006) “Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island”, Biodegradation, 17(2), 3-9.
Menzie, C.A.; Potocki, B.B. and Santodonat, J., (1992) “Exposure to carcinogenic pahs in the environment”, Environmental Science and Technology, 26(7), 1278-1284.
Mirsal I.A., (2008) “Soil Pollution”, Origins, Monitoring & Remediation, Springer.
Mishra, S., Jyot, J., Kuhad, R.C. and Lal, B., (2001) “Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil”, Applied and Environmental Microbiology, 67(4), 1675-1681.
Mohanty, G. and Mukherji, S., (2008) “Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia”, International Biodeterioration and Biodegradation, 61(3), 240-250.
Mohn, W.W. and Stewart, G.R., (2000) “Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils”, Soil Biology and Biochemistry, 32(8-9), 1161-1172.
Muller, S., Vogt, C., Laube, M., Harms, H. and Kleinsteuber, S., (2009) “Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions”, Fems Microbiology Ecology, 70(3), 586-596.
Muyzer, G., and K. Smalla., (1998) “Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology”, Antonie van Leeuwenhoek, 73(1), 127-141.
Nakamura, K., Ishida, H. and Iizumi, T., (2000) “Constitutive trichloroethylene degradation led by tac promoter chromosomally integrated upstream of phenol hydroxylase genes of Ralstonia sp. KN1 and its nucleotide sequence analysis”, Journal of Bioscience and Bioengineering, 89(1), 47-54.
Namkoong, W., Hwang, E.Y., Park, J.S. and Choi, J.Y., (2002) “Bioremediaiton of diesel-contaminated soil with composting”, Environmental Pollution, 119(1), 23-31.
Nano, G., Borroni, A. and Rota, R., (2003) “Combined slurry and solid-phase bioremediation of diesel contaminated soils”, Journal of Hazardous Materials, 100(1-3), 79-94.
Nolan, J.M., Wesley, S.P. and Knowles, E.S., (2009) “Using public service announcements to change behavior: no more money and oil down the drain”, Ournal Of Applied Social Psychology, 39(5), 1035-1056.
Obuekwe, C.O., Al-Jadi, Z.K. and Al-Saleh, E.S., (2009) “Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment”, International Biodeterioration and Biodegradation, 63(3), 273-279.
O'Donnell, A. G., and Gorres, H. E. (1999) “16S rDNA methods in soil microbiology. Curr. Opin”, Biotechnology, 10(3)225-229.
Oha, Y.S., Simb, D.S. and Kim, S.J., (2001) “Effects of nutrients on crude oil biodegradation in the upper intertidal zone”, Marine Pollution Bulletin, 42(12), 1367-1372.
Okoh, A., Ajisebutu, S., Babalola, G. and Trejo-Hernandez, M.R., (2001) “Potential of Burkholderia cepacia RQ1 in the biodegradation of heavy crude oil”, International Microbiology, 4(2), 83-87.
Overcash, M.R. and Pal, D., (1979) “Design of land treatment system for industrial wastes: theory and practice”, Ann Arbor Science, 159-219.
Owsianiak, M., Szulc, A., Chrzanowski, L., Cyplik, P., Bogacki, M., Olejnik-Schmidt, A.K. and Heipieper, H.J., (2009) “Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity”, Applied Microbiology and Biotechnology, 84(3), 545-553.
Palmer, C.J. and Johnson, R.L. (1989) “Physical processes controlling the transport of nonaqueous phase liquids in the subsurface”, EPA/625/4-89/019. Cincinnati 0H 45268. In Seminar Publication: Transport and fate of contaminants in the subsurface, 23-27.
Pankow, J.F. and Cherry, J.A., (1996) “Dense chlorinated solvent and other DNAPLs in ground water: History, behavior and remediation”, Waterloo Press, Ontario,Canada, 260.
Paudyn, K., Rutter, A., Rowe, R.K. and Poland, J.S., (2008) “Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming”, Cold Regions Science and Technology, 53(1) 102–114
Peng, R.H. Xiong, A.S., Xue, Y., Fu,X.Y., Gao, F., Zhao, W., Tian, Y.S., Yao, Q.H., (2008) “Microbial biodegradation of polyaromatic hydrocarbons”, FEMS Microbiology Reviews, 32(6), 891-1032.
Peter, C., Lau, K. and Lorengo, V.D., (1999) “Genetic Engineering: The frontier of Bioremediation”, Environmental science & technology, 33(5), 124A–128A
Phrommanich, S., Suanjit, S., Upatham, S., Grams, S.V., Kruatrachue, M., Pokethitiyook, P., Korge, G. and Hofmann, A., (2007) “Quantitative detection of the oil-degrading bacterium Acinetobacter sp. Strain MUB1 by hybridization probe based real-time PCR”, Microbiological Research, 164(4), 486-492.
Popat, S.C., Deshusses, M.A., (2009) “Reductive dehalogenation of trichloroethene vapors in an anaerobic biotrickling filter”, Environmental Science & Technology, 43(20), 7856-7861.
Porta, A., Trovato, A., McCarthy, K., Uhler, A. and Andreott, G., (1998) “Degration of saturated and polycyclicaromatic hydrocarbons and formation of their metabolites in bioremediated crude oil-containing soils”, In situ and On-Site Bioremediation, 144(1-4), 419-440.
Prince, R.C., (2000) “Biodegradation of Methyl tertiary-Butyl Ether (MTBE) and other fuel oxygenates”, Critical Reviews in Microbiology, 26(3), 163-178.
Providenti, M.A., Lee, H. and Trevors, J.T., (1993) “Selected factors limiting the microbial-degradation of recalcitrant compounds”, Journal of Industrial Microbiology, 12(6), 379-395.
Qin, X.S., Huang, G.H. and He, L., (2009) “Simulation and optimization technologies for petroleum waste management and remediation process control”, Journal of Environmental Management, 90(1), 54-76.
Quijano, G., Hernandez, M., Thalasso, F., Munoz, R. and Villaverde, S., (2009) “Two-phase partitioning bioreactors in environmental biotechnology”, Applied Microbiology and Biotechnology, 84(5), 829-846.
Ramos-Padron, E., Bordenave, S., Lin, S., Dong, X., Sensen, C. W., Fornier, J., Voordouw, G. and Gieg, L. M., (2011) “Carbon and sulfur cycling by microbial communities in a Gypsum-treated oil sand tailings pond”, Environmental Science Technology, 45(2), 439-446.
Raynal, M. and Pruden, A., (2008) “Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions”, Biodegradation, 19(2), 269-282.
Rhykerd, R.L., Sen, D., McInnes, K.J. and Weaver, R.W., (1998) “Volatilization of crude oil from soil amended with bulking agents”, Soil Science, 163(2), 87-92.
Riffaldi, R., Levi Minzi, R., Cardelli, R., Palumbo, S. and Saviozzi, A., (2006) “Soil biological activities in monitoring the bioremediation of diesel oil contaminated soil”, Water, Air and Soil Pollution, 170(1), 3-15.
Rike, A.G., Haugen, K.B., Borresen, M., Engene, B. and Kolstad, P., (2003) “In situ biodegradation of petroleum hydrocarbons in frozen arctic soils”, Cold Regins Science and Technology, 37, 97-120.
Robles-Gonzalez, I.V., Fava, F. and Poggi-Varaldo, H.M., (2008) “A review on slurry bioreactors for bioremediation of soils and sediments”, Microbial Cell Factories, 7(5).
Roling, W.F.M., Milner, M.G., Jones, D.M., Lee, K., Daniel, F., Swannell, R.J.P. and Head, I.M., (2002), “Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation”, Appl Environ Microbiology, 68(11), 5537-5548.
Roncato-Maccari, L.D.B., Ramos, H.J.O., Pedrosa, F.O., Alquini, Y., Chubatsu, L.S., Yates, M.G., Rigo, L.U., Steffens, M.B.R. and Souza, E.M., (2003) “Root colonization, systemic spreading and contribution of Herbaspirillum seropedicae to growth of rice seedling”, Symbiosis, 35(), 261-270.
Sabate, J., Vinas , M. and Soloanas A.M., (2004) “Laboratory-scale bio-remediation experiment on hydrocarbon-contaminated soils”, International Biodeterioration and Biodegradation, 54(1), 19-25.
Sabate, J., Vinas, M. and Solanas, A.M., (2004) “Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils”, Internation Biodeterioration and Biodegradation, 54(1), 19-25.
Sameera, V., Naga Deepthi, C.H., Srinu Babu, G., Ravi Teja, Y., (2011) “Role of biosorption in environmental cleanup”, Journal of Microbial & Biochemical Technology R1: 001.
Sarkar, D., Ferguson, M., Datta, R. and Birnbaum, S., (2005) “Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation”, Environmental Pollution, 136(1), 187-195.
Schwarzenbach, R.P. and Westall, J., (1981) “Transport of nonpolar organic compounds from surface water to groundwater”, Environmental Science and Technology, 15(11), 1360-1367.
Schwille, F. and Pankow, J.F., (1988) “Dense chlorinated solvents in porous and fractured media - model experiments”, English Language Edition. Lewis Publishers, Chelsea, MI, 142.
Semenza, G.L., (2009) “Regulation of oxygen homeostasis by hypoxia-inducible factor 1”, Physiology, 24(2), 97-106.
Siegrist, R.L., (2002) “Fundamentals of in situ chemical oxidation (ISCO). Teleconference of in situ treatment of groundwater contaminated with non-aqueous phase liquids”, http://www.clu-in.org/, 10-11.
Smadar, A., Michal, G. and Yoram, A., (2001) “Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge”, Bioremediation Journal, 5(3), 193-209.
Sublette, K.L., (2001) “Fundamentals of bioremediation of hydrocarbon contaminated soils, the University of Tulsa”, Continuing Engineering and Science Education, March 5-6.
Sykora, P., Kharbanda, K.K., Crumm, S.E. and Cahill, A., (2009) “S-adenosyl-l-methionine co-administration prevents the ethanol-elicited dissociation of hepatic mitochondrial ribosomes in male rats”, Clinical and Experimental Research, 33(1), 1-9.
Tapilatu, Y.H., Grossi, V., Acquaviva, M., Militon, C., Bertrand, J.C., and Cuny, P., (2010) “Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France) ”, Extremophiles, 14(2), 225-231.
Ten, K. H., Kirienko, O. A. and Imranova, E. L., (2004) “Effect of photosynthetic bacteria and compost on degradation of petroleum products in soil”, Applied and
Tjoelker, M.G., Oleksyn, J. and Reich, P.B., (2001) “Modelling respiration of vegetation: evidence for a general temperature-dependent Q10”, Global Change Biology, 7(2), 223-230.
Tyagi, M., Fonseca, M.M.R. and Carvalho, C.C.C.R., (2011) “Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes”,Biodegradation, 22(2), 231-241
U.S. EPA, (1994) “How to evaluate alternative cleanup technologies forunderground storage tank site: a guide for corrective action plan reviewers”, U.S. Environmental Protection Agency, 510-B-94-003.
U.S. EPA, (1997a) “Innovative uses of compost: bioremediation and pollution prevention”, U.S. Environmental Protection Agency, 530-F-97-042.
U.S. EPA, (1997b) “Innovative uses of compost: composting of soils contaminated by explosives”, U.S. Environmental Protection Agency, 530-F-97-045.
U.S. EPA, (1999) “Monitored natural attenuation of petroleum hydrocarbons”, U.S.EPA Remedial Technology Fact Sheet, 600-F-98-021.
Urakawa, H., Kita-Tsukamoto, K., and Ohwada, K. (1999) “Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis”, Microbiology, 145(11), 3305-3315.
Uyttebroek, M., Vermeir, S., Wattiau, P., Ryngaert, A. and Springael, D., (2007) “Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH”, Applied and Environmental Microbiology, 73(10), 3159-3164.
Vazquez-Duhalt, R. and Greppin, H., (1986) “Biodegradation of used motor oil by bacteria promotes the solubilization of heavy metals”, The Science of the Total Environment, 52(1-2), 109-121.
Vazquez-Duhalt, R., (1989) “Environmental impact of used motor oil”, Science of The Total Environment, 79(1), 1-2.
Venosa, A.D. and Zhu, X.Q., (2003) “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands”, Spill Science and Technology Bulletin 8(2), 163-178.
Vidali, M., (2001) “Bioremediation:an overview”, Pure and Applied Chemistry, 73(7), 1163-1172.
Vieira, P.A., Faria, S., Vieira, R.B., De Franca, F.P. and Cardoso, V.L., (2009) “Statistical analysis and optimization of nitrogen, phosphorus, and inoculum concentrations for the biodegradation of petroleum hydrocarbons by response surface methodology”, World Journal Of Microbiology And Biotechnology, 25(3), 427-438.
Washington, D.C., (2005). “Technical and regulatory guidance for in-situ chemical oxidation of contaminated soil and groundwater”, http://www.itrcweb.org/, 2nd ed. ISCO-2.
Watanabe, K., Kodama, Y., Syutsubo, K., and Harayama, S. (2000) “Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities”, Applied and Environmental Microbiology, 66(11), 4803-4809.
Wenzel, W.W., (2009) “Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils”, Plant and Soil, 321(1-2), 385-408.
Whyte, L.G., Bourbonniere, L., Greer, C.W., (1997) “Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways”, Applied and Environmental Microbiology, 63(9), 3719-3723.
Wiedemeier, T.H., Rifai, H.S., Newell, C.J. and Wilson, J.T., (1999) “Natural attenuation of fuels and chlorinated solvents in the subsurface”, John Wiley and Sons.
Woo, S.H., Lee, M.W. and Park, J.M., (2004) “Biodegradation of phenanthrene in soil-slurry system with different mass transfer regimes and soil contents”, Journal of Biotechnology, 110(3), 235-250.
Wrenn, B.A., Suidan, M.T., Strohmeier, K.L., Eberhart, B.L., Wilson, G.J. and Venosa, A.D., (1997) “Nutrient transport during bioremediation of contaminated beaches: evaluation with lithium as a conservative tracer”, Water Research, 31(3), 515-524.
Zanaroli, G., Balloi, A., Negroni, A., Borruso, L., Daffonchio, D. and Fava, F., (2012) “A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions”, Journal of Hazardous Materials, 209-210(30), 449-457.
工業技術研究院環境與安全衛生技術發展中心,2003,土壤中總石油碳氫化合物(TPHs)檢測之研究,EPA-92-E3S4-02-01。
王一雄,1997,土壤環境污染與農藥,明文書局股份有限公司。
王一雄,陳尊賢,李達源,1995,土壤污染學,農業化學系-專書。
台灣中油股份有限公司,2010,四通八達輸油網—油管與泵站,石油教室。http://www.cpc.com.tw/big5/content/index01.asp?sno=198&pno=108
行政院環境保護署,2012,http://www.epa.gov.tw/
宋鴻愷,2006,廚餘堆肥化過程降解柴油及燃料油之研究,國立高雄海洋科技大學海洋環境工程系(海洋環境工程研究所)。
林財富、吳龍泉、洪志雄、洪旭文、高志明、陳谷汎、陳廷育、許榮欣、葉桂君、楊金鐘、廖毓鈴、鄭秀卿、謝汶興、顏宏愷,2003,工廠土壤及地下水污染整治手冊-石化業,經濟部工業局。
洪哲文,(1997),進口商交錢了事,基管會收錢辦事,廢油回收就此上路,石油情報月刊,第35期,第4-6頁。
張碧芬、袁紹英,1999,多環芳香族碳氫化合物(PAHs)之環境流布及其生物分解,環境檢驗雙月刊,第22期。
莊慶芳、李孟哲、楊秓忠、盧至人,2002,多環芳香族化合物 (PAH)各馴化菌株生物降解與生物轉化利用之相關性研究,聯合學報第19期,第211-216頁。
郭魁士,1985,土壤實驗,臺北縣,中國書局。
陳致谷、張添晉,(1995),土壤污染生物復育技術之應用及展望,工業污染防治,第35期,第113-137頁。
曾嘉玲,2010,以實廠蛇木屑生物濾床處理溶劑製程排氣之操作性能研究,國立中山大學環境工程研究所。
黃俊嘉,2004,以土耕法結合生物堆法處理受柴油污染之土壤,國立中山大學環境工程研究所。
楊琬瑜,2008,重油分解菌之分離鑑定與降解能力探討,國立中山大學生物科學系。
經濟部工業局,2007,石油碳氫化合物土壤及地下水污染預防與整治技術手冊。
廖翊廷,2007,應用生物刺激及菌種添加之離場土耕法整治總石油碳氫化物污染土壤之模場研究,國立成功大學環境工程學系。
蔡見能,2005,地面儲槽洩漏污染潛勢評估及傳輸模式研究,朝陽科技大學環境工程與管理所。
謝宗霖,(2009),以兩階段生物整治策略處理受石油碳氫化合物汙染土壤復育之研究,國立成功大學環境工程研究所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.192.3
論文開放下載的時間是 校外不公開

Your IP address is 3.137.192.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code