Responsive image
博碩士論文 etd-0823112-172423 詳細資訊
Title page for etd-0823112-172423
論文名稱
Title
溫度敏感性PNIPAM/PTMA共聚化合物的合成與應用於醇氧化成為醛酮的催化反應
Synthesis of temperature-responsive PNIPAM/PTMA and their application in the catalyzed oxidation of alcohols to aldehydes and ketones
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-24
繳交日期
Date of Submission
2012-08-23
關鍵字
Keywords
溫度敏感性、氮-異丙基丙烯醯胺、最低臨界溶解溫度、2,2,6,6-四甲基呱啶-1-氧自由基、醇催化
LCST, TEMPO, alcohol catalyzed, N-isopropylacrylamide, temperature-responsive
統計
Statistics
本論文已被瀏覽 5658 次,被下載 1979
The thesis/dissertation has been browsed 5658 times, has been downloaded 1979 times.
中文摘要
本研究是製備具溫度敏感性PNIPAM/PTMA共聚化合物與應用於醇氧化成為醛酮的催化反應,利用自由基聚合法合成PNIPAM/PTMA共聚化合物,PNIPAM為溫度敏感性高分子具有最低臨界溶解溫度(Lower Critical Solution Temperature, LCST)的特性,當溫度低於LSCT時,可溶解於水溶液中;當溫度高於LCST時,氨基與水分子的氫鍵斷裂而不溶於水溶液中,PTMA高分子具有2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl (TEMPO)官能基,可應用於醇氧化成醛酮的催化反應。以1H NMR和FT-IR光譜來作定性分析確認所合成之聚合物結構和比例。再以GPC來作定量分析可得聚合物的分子量,藉由數目平均分子量去計算的重量百分率;以UV-Vis光譜測定不同莫耳比例之聚合物之LCST溫度。 PNIPAM/PTMA高分子對催化醇氧化成醛酮反應具有可回收、高催化活性、高選擇性等優點。以溫度敏感性高分子接枝TEMPO官能基提供簡單回收可重複再利用和有效減少催化劑使用量,實現對環境友善和綠色化學的理念。
Abstract
Temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)/ poly(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl methacrylate) (PTMA) copolymer are
synthesiszed by radical polymerization and atom transfer radical polymerization. The catalytic oxidation of alcohols to aldehydes and ketones using the NIPAM/PTMA copolymer as a catalyst was investigated. The copolymer were characterized by nuclear magnetic resonance spectroscopy, infrared spectroscopy, and gel permeation chromatography. The results of temperature-dependent UV/Vis absorption show that the lower critical solution temperature (LCST) is around 32-42 ℃ as the molecular percentage of PTMA is 0-6%. When the molecular percentage of PTMA is high than 6%, the LCST is not observed. The yield of the catalytic oxidation using the PNIPAM/PTMA copolymer as a catalyst is high than 99% within 30 min. The temperature-responsive PNIPAM/PTMA copolymer can be precipitated and purified by increasing temperature of the reaction solution higher than the LCST.
目次 Table of Contents
1-1 簡介 2
1-2 溫度敏感性高分子 4
1-2.1 簡介 4
1-2.2 最低臨界溶解溫度 5
1-2.3 調控疏水/親水單體比例 6
1-2.4 與離子性單體共聚 6
1-2.5 溶劑影響 7
1-2.6 溫度敏感型共聚高分子合成方法 7
1-2.7 未來展望及應用 8
1-3 氮氧自由基TEMPO:選擇性對醇催化氧化 10
1-3.1 簡介 10
1-3.2 TEMPO/NaOCl/NaBr 催化系統 10
1-3.1 含Cu均相助催化試劑 11
1-3.2 其他均相助催化劑 12
1-3.3 FeCl3/NaNO2/TEMPO助催化系統 13
1-3.4 不含過渡金屬助催化系統 13
1-3.5 Laccase/TEMPO助催化系統 14
1-3.6 TEMPO固體化研究 14
1-3.7 結論 15
1-4 研究動機 17
1-5 參考文獻 18
2-1實驗藥品 22
2-1.1 氮-異丙基丙烯醯胺(N-isopropylacrlamide,NIPAM)單體純化 22
2-1.2 間氯苯甲酸(mCPBA)的純化 22
2-1.3 TEMPO催化緩衝液配製 22
2-1.4 實驗藥品 23
2-2實驗儀器 25
2-2.1 膠體滲透層析儀(Gel Permeation Chromatography Instrument) 25
2-2.2 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer; NMR) 25
2-2.3 傅立葉轉換光譜儀(Fourier Transform Infraed Ray Spectrometer) 26
2-2.1 紫外光/可見光光譜儀(UV/Vis Spectrophotometer) 26
2-2.2 超音波震盪水槽(Ultrasonic Cleaner) 26
3-1實驗流程 28
3-2 合成方法 29
3-2.1 Poly (N-isopropylacrlamide)的合成方法 29
3-2.2 PNIPAM-b-PHMTM的合成方法 30
3-2.3 PNIPAM-r-PHMTM的合成方法 31
3-2.4 PNIPAM/PHMTM的氧化方法 31
3-2.5 PNIPAM/PHMTM/PEGMA的合成方法 32
3-2.6 核磁共振光譜儀(1H-NMR)分析 33
3-2.7 傅立葉紅外線光譜儀(FT-IR)分析 33
3-2.8 分子量和分子量分布 33
3-2.9 穿透度變化 33
4.1 Poly(N-isopropylacrylamide)(PNIPAM)合成結果和結構鑑定 35
4.1-1 1H-NMR分析 35
4.1-2 紅外線(FT-IR)光譜圖 36
4.1-3 分子量及分子量分布 37
4.1-4 Poly(N-isopropylacrylamide)(PNIPAM)的LCST測定 37
4.2 雙嵌段共聚物PNIPAM-b-PTMA合成結果和結構鑑定 39
4.2-1 1H-NMR分析 39
4.2-2 紅外線(FT-IR)光譜圖 39
4.2-3 分子量及分子量分布 41
4.3-4 雙嵌段共聚物PNIPAM-b-PTMA的LCST 測定 43
4.3 雜亂共聚物PNIPAM-r-PTMA合成結果和結構鑑定 44
4.3-1 1H-NMR分析 44
4.3-2 紅外線(FT-IR)光譜圖 44
4.3-3 分子量及分子量分布 45
4.3-4 雜亂共聚物PNIPAM-r-PTMA的LCST測定 48
4.4 雜亂共聚物PNIPAM/PTMA/PEGMA合成結果和結構鑑定 50
4.4-1 1H-NMR分析 50
4.4-2 紅外線(FT-IR)光譜圖 51
4.4-3 分子量及分子量分布 52
4.4-4 雜亂共聚物PNIPAM/PTMA/PEGMA的LCST測定 55
4.5 共聚物PNIPAM/PTMA應用於醇氧化為醛酮的催化反應 57
4.5-1 雙嵌段共聚物PNIPAM-b-PTMA應用於醇氧化為醛酮的催化反應 57
4.5-2 雜亂共聚物PNIPAM-r-PTMA應用於醇氧化為醛酮的催化反應 59
4.5-3 雜亂共聚物PNIPAM/PTMA/PEGMA應用於醇氧化為醛酮的催化反應 61
第五章 結論 63
附錄 66
參考文獻 References
1. Y. alaev, B. Mattiasson, Trends Biotechnol. 1999, 17, 335.
2. S. Anastase-Ravion, Z. Ding, A. Pelle, A. S. Hoffman, D. Letourneur, J. Chromatogr. Biomed. Appl. 2001, 761, 247.
3. A. Kondo, T. Kaneko, K. Higashitani, Biotechnol. Bioeng. 1994, 44, 1.
4. A. S. Dilgimen, Z. Mustafaeva, M. Menchenk, T. Kaneko, Y. Osada, M.Mustafaev
, Biomaterials. 2001, 22, 2383.
5. W. L. J. Hinrichs, N. M. E. Schuurmans-Nieuwenbroek, P. van de Wetering ,W. E. Hennink, J. Controlled Release 1999, 60, 249.
6. V. Bulmuş, S. Patır, S.A. Tuncel, E. Pişkin, , J. Controlled Release 2001, 76, 265.
7. S. Dincuer, A. Tuncel, E. Pisukin, Macromol Chem Phys. 2002, 203, 1460.
8. M. Koyama, T. Hirano, K. Ohno, Y. Katsumoto, J. Phys. Chem. B 2008, 112, 10854.
9. S. H. Li, E. M. Woo, J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 2355.
10. H. G. Schild, D. A. Tirrell, J. Phys. Chem. 1990, 94, 4352.
11. A. Laukkanen, L. Valtola, F. M. Winnik, H. Tenhu, Macromolecules 2004, 37, 2268.
12. S. Hirotsu, J. Chem. Phys. 1988, 88, 427.
13. H. G. Schild, M. Muthukumar, D. A. Tirrell, Macromolecules 1991, 24, 948.
14. Y. Zhang,S. Furyk,D. E. Bergbreiter, P. S. Cremer, J. Am. Chem. Soc. 2005, 127, 14505.
15. T. Baltes, F. Garret-Flaudy, R. Freitag, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2977.
16. C. Diab, Y. Akiyama, K. Kataok, F. M. Winnik, Macromolecules 2004, 37, 2556.
17. M. Shibayama, S. Y. Mizutaini, Polymer 2001, 42, 6329.
18. C. S. Brazel, N. A. Peppas, Macromolecules 1995, 28, 8016.
19. H. Inomata, S. Goto, S. Saito, Macromolecules 1990, 23, 4887.
20. W. F. Lee, W. Y. Yuan, J. Appl. Polym. Sci. 2000, 77, 1760.
21. M. Hahn, E. Gornitz, H. Dautzenberg, Macromolecules 1998, 31, 5616.
22. T. Aoki, Y. Nagao, T. Etsuko, J. Biomater. Sci. Polym. Et. 1995, 7, 539.
23. K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921.
24. S. Aoshima, S. Kanaoka , Adv Polym Sci. 2008, 210, 169.
25. J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
26. S. Qin, Y. Geng, D. E. Discher, S. Yang, Adv. Mater. 2006, 18, 2905.
27. H. Tanii, K. Hashimoto, Toxicol Lett. 1991, 58, 209.
28. T. Okano, Y. H. Bae, H. Jacobs, J Controlled Release 1991, 11, 225.
29. V. A. Golubev, E. G. Rozantsev, M. B. Neiman, Bull. Acad. Sci. USSR Chem. Ser. 1965, 14, 1898.
30. M. Semmelhack, C. R. Schmid, D. A. Cortes, C. S. Chou, J. Am. Chem. Soc. 1984, 106, 3374.
31. B. Betzemeier, M. Cavazzini, S. Quici, P. Knochel, Tetrahedron Lett. 2000, 41, 4343.
32. G. Ragagnin, B. Betzemeier, S. Quici, P. Knochel, Tetrahedron 2002, 58, 3985
33. A . Dijksman, I. W. C. E. Arends, R. A. Sheldon, Chem. Commum. 1999 , 16, 1591.
34. A. Dijksman, A. M. Gonzalez, I. Payeras, I. W. C. E. Arends, R. A. Sheldon, J. Am. Chem. Soc. 2001, 123, 6826.
35. A. Cecchetto, F. Fontana, F. Miniscia, Tetrahedron Lett. 2001, 42, 6651.
36. N. W. Wang, R. H. Liu, J. P. Chen, X. M. Liang, Chem. Commun. 2005, 42, 5322.
37. R. H. Liu, X. M. Liang, C. Y. Dong, X. Q. Hu, J. Am. Chem. Soc. 2004, 126, 4112.
38. P. Baiocco, A. M. Barreca, M. Fabbrini, C. Galli, P. Gentili, Org. Biomol. Chem. 2003, 1, 191.
39. C. Galli, P. Gentili, J. Phys. Org. Chem. 2004, 17, 973.
40. I. W. C. E. Arends, Y. X. Li, R. Ausan, R. A. Sheldon, Tetrahedron 2006, 62, 6659.
41. P. Ferreira, W. Hayes, E. Phillips, D. Rippon, S. C. Tsang, Green Chemistry 2004, 6, 310.
42. M. Gilhespy, M. Lok, X. Baucherel, Catal. today 2006, 117, 114.
43. C. Tanyeli, A. Gumus, Tetrahedron Lett. 2003, 44, 1639.
44. Y. Kashiwagi, H. Ikezoe, T. Ono, Synlett. 2006, 17, 69.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code