Responsive image
博碩士論文 etd-0823115-001730 詳細資訊
Title page for etd-0823115-001730
論文名稱
Title
高糖環境對角質細胞功能的影響:對糖尿病傷口癒合不良的探討
Effects of high glucose on keratinocyte functions: focusing on the impaired diabetic wound healing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-09-18
繳交日期
Date of Submission
2015-09-23
關鍵字
Keywords
高糖、角質細胞、乙型防禦素-3、乙型防禦素-2、白介素-8、白介素-22
hBD3, interleukin-8, keratinocyte, hBD2, high glucose, interleukin-22
統計
Statistics
本論文已被瀏覽 5714 次,被下載 1378
The thesis/dissertation has been browsed 5714 times, has been downloaded 1378 times.
中文摘要
糖尿病特徵是血漿葡萄糖濃度增高及併發皮膚感染率增加,免疫反應的改變被認為是造成此併發症的可能原因。在高糖環境下,表皮角質細胞產生的抗菌物質減少,包括透過糖化終產物的產生而抑制了p38MAPK訊息傳遞使得乙型防禦素-3 (BD3)產量減少,抑制Staphylococcus aureus 的能力降低,因而容易出現糖尿病的皮膚感染。另外,角質細胞在高糖環境下亦有乙型防禦素-2 (BD2)表現減少情形,同樣是透過糖化終產物而抑制了pSTAT-1訊息傳遞所致。糖尿病傷口除了角質細胞本身受高糖環境影響外,也有和發炎細胞間交互作用的間接影響導致癒合受損。角質細胞在高糖環境下透過活性氧化物種的產生而刺激EGFR-ERK路徑,使得白介素-8 (IL-8)產量增加,因而吸引更多中性球至傷口處,當抑制中性球功能後,即可改善糖尿病鼠的傷口癒合。此外,單核球在高糖培養後,因為白介素-22 (IL-22)產量減少而降低了促進角質細胞移動的能力。整體而言,高糖對角質細胞功能的直接或間接影響都表現出糖尿病傷口癒合不良的情形,若能針對潛在的原因作改善,不失為治療的策略。
Abstract
Diabetes mellitus is characterized by elevated plasma glucose and increased rate of skin infection. Altered immune responses have been suggested to contribute to this prevalent complication. High glucose treatment reduced human β-defensin-3 (hBD3) expression of cultured keratinocytes. This pathogenic process involved inhibition of p38MAPK signaling, an event that resulted from increased formation of advanced glycation end product and showed worse anti-Staphylococcus aureus activity. In addition, high-glucose cultivated keratinocytes expressed reduced levels of human β-defensin-2 (hBD2) and pSTAT-1. Besides the impact on keratinocyte cultured under high glucose, the suboptimal interaction between keratinocytes and inflammatory cells also contributed to impaired diabetic wound healing. High-glucose environment enhanced interleukin (IL)-8 production via EGFR-ERK pathway in a ROS-dependent manner in keratinocytes. Treating diabetic rats with neutrophil inhibitor improved the healing. On the other hands, high glucose cultivated monocytes have significantly reduced production of IL-22, a molecule that is responsible for promoting keratinocyte migration. In summary, high glucose environment impared keratinocyte function directly or indirectly that contributed to impaired diabetic wound healing, and focusing on these defects will present a therapeutic approach to promote diabetic healing.
目次 Table of Contents
論文審定書……………………………………………………………………………i
致謝……………………………………………………………………………………ii
中文摘要………………………………………………………………………………iii
英文摘要………………………………………………………………………………iv
目錄……………………………………………………………………………………v
圖次……………………………………………………………………………………viii
表次……………………………………………………………………………………xii
縮寫表…………………………………………………………………………………xiii
第一章 緒論…………………………………………………………………………….1
第一節 前言…………………………………………………………..……………...1
第二節 文獻探討……………………………………………………………..……...1
第二章 高糖環境在人類角質細胞抑制了p38MAPK的訊息傳遞並減少β-defensin-3的表現………………………………………………………………………….8
第一節 摘要………………………………………………………………………….8
第二節 研究背景……………………………………………………………..……...8
第三節 實驗方法………………………………………………………………….....9
第四節 實驗結果………………………………………………………………..….14
第五節 討論………………………………………………………………..……….17
第三章 高糖環境降低人類角質細胞β-defensin-2的表現…………………………..37
第一節 摘要………………………………………………………………………...37
第二節 研究背景…………………………………………………………..……….37
第三節 實驗方法……………………………………………………………..…….38
第四節 實驗結果…………………………………………………………..……….40
第五節 討論…………………………………………………………………..…….41
第四章 高糖環境促進角質細胞的氧化壓力並增加IL-8的釋出…………………..53
第一節 摘要…………………………………………………………………...……53
第二節 研究背景…………………………………………………………..……….53
第三節 實驗方法……………………………………………………………..…….54
第四節 實驗結果…………………………………………………………..……….58
第五節 討論……………………………………………………………………..….60
第五章 高糖培養之周邊血單核球透過降低IL-22表現而使角質細胞功能受損…81
第一節 摘要……………………………………………………………………..….81
第二節 研究背景………………………………………………………………..….81
第三節 實驗方法………………………………………………………….…….….82
第四節 實驗結果………………………………………………………………..….85
第五節 討論…………………………………………………………………..…….87
第六章 結論………………………………………………………………………….102
參考文獻……………………………………………………………………………105
附錄一 免疫組織化學染色使用之抗體…………………………………………….118
附錄二 西方墨點法使用之抗體…………………………………………………….119
附錄三 即時聚合酶鏈鎖反應使用之primer序列………………………………..…120
附錄四 角質細胞分化之蛋白質標記……………………………………………….121
附錄五 本論文已發表之文章原文……………..…………………….……………..122
參考文獻 References
Abdulrazak A, Bitar ZI, Al-Shamali AA, Mobasher LA. Bacteriological study of diabetic foot infections. J Diabetes Complications 2005; 19: 138-41.
Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 2001; 117: 106-11.
Alikhani M, Maclellan CM, Raptis M, Vora S, Trackman PC, Graves DT. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 2007; 292: C850-6.
Asai J, Takenaka H, Ichihashi K, Ueda E, Katoh N, Kishimoto S. Successful treatment of diabetic gangrene with topical application of a mixture of peripheral blood mononuclear cells and basic fibroblast growth factor. J Dermatol 2006; 33: 349-52.
Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/ interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 1989; 84: 1045-9.
Bamberger C, Schärer A, Antsiferova M, Tychsen B, Pankow S, Müller M, et al. Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. Am J Pathol 2005; 167: 733-47.
Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R, et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 2009; 104: 1095-102.
Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufanob MA, et al. Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 2009; 30: 267-72.
Bessa LJ, Fazii P, Di Giulio M, Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int Wound J 2015; 12: 47-52.
Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 2005; 174: 3695-702.
Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med 2007; 13: 30-9.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-20.
Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 1994; 43: 836-41.
Bullard KM, Lund L, Mudgett JS, Mellin TN, Hunt TK, Murphy B, et al. Impaired wound contraction in stromelysin-1-deficient mice. Annals of surgery 1999; 230: 260-5.
Butmarc J, Yufit T, Carson P, Falanga V. Human beta-defensin-2 expression is increased in chronic wounds. Wound Repair Regen 2004; 12: 439-43.
Chanchamroen S, Kewcharoenwong C, Susaengrat W, Ato M, Lertmemongkolchai G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun 2009; 77: 456-63.
Choma DP, Pumiglia K, DiPersio CM. Integrin α3β1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 2004; 117: 3947-59.
Clark RAF, Nielsen LD, Welch MP, McPherson JM. Collagen matrices attenuate the collagen synthetic response of fibroblasts to TGF-beta. J Cell Sci 1995; 108: 1251-61.
Danen EH, van Rheenen J, Franken W, Huveneers S, Sonneveld P, Jalink K, et al. Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol 2005; 169: 515-26.
Deiters U, Barsig J, Tawil B, Mühlradt PF. The macrophage-activating lipopeptide-2 accelerates wound healing in diabetic mice. Exp Dermatol 2004; 13: 731-9.
Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med 1997; 14: 29-34.
Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146: 46-55.
Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil depleted mice. J Leukoc Biol 2003; 73: 448-55.
Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 2000; 164: 1814-9.
Duraisamy Y, Gaffney J, Slevin M, Smith CA, Williamson K, Ahmed N. Aminosalicylic acid reduces the antiproliferative effect of hyperglycaemia, advanced glycation endproducts and glycated basic fibroblast growth factor in cultured bovine aortic endothelial cells: comparison with aminoguanidine. Mol Cell Biochem 2003; 246: 143-53.
Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007; 127: 514-25.
Fini ME, Girard MT, Matsubara M. Collagenolytic/gelatinolytic enzymes in corneal wound healing. Acta ophthalmologica 1992; 70S: 26-33.
Frankart A, Coquette A, Schroeder KR, Poumay Y. Studies of cell signaling in a reconstructed human epidermis exposed to sensitizers: IL-8 synthesis and release depend on EGFR activation. Arch Dermatol Res 2012; 304: 289-303.
Fulton C, Anderson GM, Zasloff M, Bull R, Quinn AG. Expression of natural peptide antibiotics in human skin. Lancet 1997; 350: 1750-1.
Gabbiani G, Chaponnier C, Huttner I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 1978; 76: 561-8.
Galkowska H, Olszewski WL, Wojewodzka U. Expression of natural antimicrobial peptide beta-defensin-2 and Langerhans cell accumulation in epidermis from human non-healing leg ulcers. Folia Histochem Cytobiol 2005; 43: 133-6.
Gallacher SJ, Thomson G, Fraser WD, Fisher BM, Gemmell CG, MacCuish AC. Neutrophil bactericidal function in diabetes mellitus: evidence for association with blood glucose control. Diabet Med 1995; 12: 916-20.
Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 2007; 117: 1249-59.
Giardino I, Fard AK, Hatchell DL, Brownlee M. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998; 47: 1114-20.
Goldstein EJ, Citron DM, Nesbit CA. Diabetic foot infections. Bacteriology and activity of 10 oral antimicrobial agents against bacteria isolated from consecutive cases. Diabetes Care 1996; 19: 638-41.
Goliger JA, Paul DL. Wounding alters epidermal connexin expression and gap junction- mediated intercellular communication. Mol Biol Cell 1995; 6: 1491-501.
Goodson WH 3rd, Hung TK. Studies of wound healing in experimental diabetes mellitus. J Surg Res 1977; 22: 221-7.
Hamed S, Ullmann Y, Egozi D, Daod E, Hellou E, Ashkar M, et al. Fibronectin potentiates topical erythropoietin-induced wound repair in diabetic mice. J Invest Dermatol 2011; 131: 1365-74.
Hamed S, Ullmann Y, Masoud M, Hellou E, Khamaysi Z, Teot L. Topical erythropoietin promotes wound repair in diabetic rats. J Invest Dermatol 2010; 130: 287-94.
Harder J, Bartels J, Christophers E, Schröder JM. A peptide antibiotic from human skin. Nature 1997; 387: 861.
Hofmann MA, Schiekofer S, Isermann B, Kanitz M, Henkels M, Joswig M, et al. Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-kappaB. Diabetologia 1999; 42: 222-32.
Huang SM, McCance DJ. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol 2002; 76: 8710-21.
Hunt TK, ed. Wound healing and wound infection: theory and surgical practice. New York: Appleton-Century-Crofts, 1980.
Ilan N, Mahooti S, Madri JA. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J Cell Sci 1998; 111: 3621-31.
Iyer V, Pumiglia K, DiPersio CM. α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: a novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 2005; 118: 1185-95.
Jarboe E, Stone BL, Burman WJ, Wallace Jr. RJ, Brown BA, Reves RR, et al. Evaluation of a disk diffusion method for determining susceptibility of Mycobacterium avium complex to clarithromycin. Diagn Microbiol Infect Dis 1998; 30: 197-203.
Jia HP, Schuttea BC, Schudye A, Linzmeierf R, Guthmillerd JM, Johnsond GK, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene 2001; 263: 211-8.
Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M. Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci 2002; 30: 185-94.
Kisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on beta-defensin 3. J Invest Dermatol 2007; 127: 2368-80.
Lambert S, Frankart A, Poumay Y. p38 MAPK-regulated EGFR internalization takes place in keratinocyte monolayer during stress conditions. Arch Dermatol Res 2010; 302: 229-33.
Lan CC, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol 2008; 159: 1103-15.
Lan CC, Wu CS, Kuo HY, Huang SM, Chen GS. Hyperglycaemic conditions hamper keratinocyte locomotion via sequential inhibition of distinct pathways: new insights on poor wound closure in patients with diabetes. Br J Dermatol 2009; 160: 1206-14.
Lateef H, Stevens MJ, Varani J. All-trans-retinoic acid suppresses matrix metalloproteinase activity and increases collagen synthesis in diabetic human skin in organ culture. Am J Pathol 2004; 165: 167-74.
Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H, et al. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999; 146: 517-29.
Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002; 14: 96-102.
Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 1975; 78: 71-100.
Liu J, Zhao S, Tang J, Li Z, Zhong T, Liu Y, et al. Advanced glycation end products and lipopolysaccharide synergistically stimulate proinflammatory cytokine/chemokine production in endothelial cells via activation of both mitogen-activated protein kinases and nuclear factor-kappaB. FEBS J 2009; 276: 4598-606.
Lobmann R, Schultz G, Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 2005; 28: 461–71.
Lobmann R, Zemlin C, Motzkau M, Reschke K, Lehnert H. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diabetes Complications 2006; 20: 329-35.
Loot MA, Kenter SB, Au FL, van Galen WJ, Middelkoop E, Bos JD, et al. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 2002; 81: 153-60.
Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 1998; 111: 850-7.
Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998; 242: 201-10.
Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 1995; 58: 128-36.
Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 2005; 15: 599-607.
Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997; 276: 75-81.
Marutsuka K, Woodcock-Mitchell J, Sakamoto T, Sobel BE, Fujii S. Pathogenetic implications of hyaluronan-induced modification of vascular smooth muscle cell fibrinolysis in diabetes. Coron Artery Dis 1998; 9: 177-84.
McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ. Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 2003; 44: 1859-65.
Midorikawa K, Ouhara K, Komatsuzawa H, Kawai T, Yamada S, Fujiwara T, et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, beta-defensins and CAP18, expressed by human keratinocytes. Infect Immun 2003; 71: 3730-9.
Mihai MM, Holban AM, Giurcâneanu C, Popa LG, Buzea M, Filipov M, et al. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom J Morphol Embryol 2014; 55:1401-8.
Mildner M, Hacker S, Haider T, Gschwandtner M, Werba G, Barresi C, et al. Secretome of peripheral blood mononuclear cells enhances wound healing. PloS one 2013; 8: e60103.
Mineshiba J, Myokai F, Mineshiba F. Transcriptional regulation of beta-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (HeLa) cells. FEMS Immunol Med Microbiol 2005; 45: 37-44.
Nakai K, Yoneda K, Igarashi J, Moriue T, Kosaka H, Kubota Y. Angiotensin II enhances EGF receptor expression levels via ROS formation in HaCaT cells. J Dermatol Sci 2008; 51: 181-9.
Nam JS, Cho MH, Lee GT, Park JS, Ahn CW, Cha BS, et al. The activation of NF-κΒ and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy. Diabetes Res Clin Pract 2008; 81: 25-32.
Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007; 127: 594-604.
Ohno Y, Aoki N, Nishimura A. In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1993; 77: 1072-7.
Park NY, Lim Y. Short term supplementation of dietary antioxidants selectively regulates the inflammatory responses during early cutaneous wound healing in diabetic mice. Nutr Metab (Lond) 2011; 8: 80.
Peveri P, Walz A, Dewald B, Baggiolini M. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med 1988; 167: 1547-59.
Pilcher BK, Wang M, Qin XJ, Parks WC, Senior RM, Welgus HG. Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann N Y Acad Sci 1999; 878: 12-24.
Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science 1988; 241: 708-12.
Reiber GE, Vileikyte L, Boyko EJ, del Aguila M, Smith DG, Lavery LA, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 1999; 22: 157-62.
Rennekampff HO, Hansbrough JF, Kiessig V, Doré C, Sticherling M, Schröder JM. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 2000; 93: 41-54.
Romero LI, Zhang DN, Herron GS, Karasek MA. Interleukin-1 induces major phenotypic changes in human skin microvascular endothelial cells. J Cell Physiol 1997; 173: 84-92.
Roupé KM, Nybo M, Sjöbring U, Alberius P, Schmidtchen A, Sørensen OE. Injury is a major inducer of epidermal innate immune responses during wound healing. J Invest Dermatol 2010; 130: 1167-77.
Roy S, Khanna S, Nallu K, Hunt TK, Sen CK. Dermal wound healing is subject to redox control. Mol Ther 2006; 13: 211-20.
Saghizadeh M, Brown DJ, Castellon R, Chwa M, Huang GH, Ljubimova JY, et al. Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: A possible mechanism of basement membrane and integrin alterations. Am J Pathol 2001; 158: 723-34.
Salonurmi T, Parikka M, Kontusaari S, Pirila E, Munaut C, Salo T, et al. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice. Cell Tissue Res 2004; 315: 27-37.
Santamaria Babi LF, Moser R, Perez Soler MT, Picker LJ, Blaser K, Hauser C. Migration of skin-homing T cells across cytokine-activated human endothelial cell layers involves interaction of the cutaneous lymphocyte-associated antigen (CLA), the very late antigen-4 (VLA-4), and the lymphocyte function-associated antigen-1 (LFA-1). J Immunol 1995; 154: 1543-50.
Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 2003; 278: 15587-94.
Schürmann C, Linke A, Engelmann-Pilger K, Steinmetz C, Mark M, Pfeilschifter J, et al. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice. J Pharmacol Exp Ther 2012; 342: 71-80.
Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002; 288: 2579-88.
Signorelli SS, Malaponte G, Libra M, Pino LD, Celotta G, Bevelacqua V, et al. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc Med 2005; 10: 1-6.
Simpson DM, Ross R. The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest 1972; 51: 2009-23.
Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341: 738-46.
Snyder RJ. Treatment of nonhealing ulcers with allografts. Clin Dermatol 2005; 23: 388-95.
Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borregaard N. Wound healing and expression of antimicrobial peptides ⁄ polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 2003; 170: 5583-9.
Sørensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 2005; 174: 4870-9.
Sørensen OE, Thapa DR, Roupé KM, Valore EV, Sjöbring U, Roberts AA, et al. Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 2006; 116: 1878-85.
Steiling H, Munz B, Werner S, Brauchle M. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair. Exp Cell Res 1999; 247: 484-94.
Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, et al. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol 2005; 167: 59-69.
Teixeira AS, Caliari MV, Rocha OA, Machado RD, Andrade SP. Aminoguanidine prevents impaired healing and deficient angiogenesis in diabetic rats. Inflammation 1999; 23: 569-81
Thomas K, Kiwit M, Kerner W. Glucose concentration in human subcutaneous adipose tissue: comparison between forearm and abdomen. Exp Clin Endocrinol Diabetes 1998; 106: 465-9.
Tomic-Canic M, Komine M, Freedberg IM, Blumenberg M. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J Dermatol Sci 1998; 17: 167-81.
Toy LW. Matrix metalloproteinases: their function in tissue repair. J Wound Care 2005; 14: 20-2.
Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 2000; 8: 13-25.
Varelias A, Cowin AJ, Adams D, Harries RH, Cooter RD, Belford DA, et al. Mitogenic bovine whey extract modulates matrix metalloproteinase-2, -9, and tissue inhibitor of matrix metalloproteinase-2 levels in chronic leg ulcers. Wound Repair Regen 2006; 14: 28-37.
von Montfort C, Fernau NS, Beier JI, Sies H, Klotz LO. Extracellular generation of hydrogen peroxide is responsible for activation of EGF receptor by ultraviolet A radiation. Free Radic Biol Med 2006; 41: 1478-87.
Wada A, Ogushi K, Kimura T, Hojo H, Mori N, Suzuki S, et al. Helicobacter pylori-mediated transcriptional regulation of the human beta-defensin 2 gene requires NF-kappaB. Cell Microbiol 2001; 3: 115-23.
Walter MN, Wright KT, Fuller HR, MacNeil S, Johnson WE. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 2010; 316: 1271-81.
Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 1996; 74: 589-607.
Woessner JF, Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5: 2145-54.
Woodley DT, Chen JD, Kim JP, Sarret Y, Iwasaki T, Kim YH, et al. Re-epithelialization. Human keratinocyte locomotion. Dermatol Clin 1993; 11: 641-6.
Wozel G, Lehmann B. Dapsone inhibits the generation of 5-lipoxygenase products in human polymorphonuclear leukocytes. Skin Pharmacol 1995; 8: 196-202.
Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25: 2648-59.
Xu KP, Li Y, Ljubimov AV, Yu FSX. High glucose suppresses epidermal growth factor receptor/ phosphatidylinositol 3-kinase/ Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes 2009; 58: 1077-85.
Yates S, Rayner TE. Transcription factor activation in response to cutaneous injury: role of AP-1 in reepithelialization. Wound Repair Regen 2002; 10: 5-15
Yavuz D, Tugtepe H, Cetinel S, Uyar S, Kaya H, Haklar G, et al. Collagen ultrastructure and TGF-beta1 expression preserved with aminoguanidine during wound healing in diabetic rats. Endocr Res 2005; 31: 229-43.
Yew TL, Hung YT, Li HY, Chen HW, Chen LL, Tsai KS, et al. Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 MAPK activation. Cell Transplant 2011; 20: 693-706.
Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes 2000; 49: 1451-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code