Responsive image
博碩士論文 etd-0824106-160552 詳細資訊
Title page for etd-0824106-160552
論文名稱
Title
水環境因子對含氮多環芳香烴化合物與膠體性有機物 結合係數之影響-pH值與離子強度
The study of pH and ionic strength effects on the binding constant of nitrogen-contained polycyclic aromatic hydrocarbons and colloid organic matter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-28
繳交日期
Date of Submission
2006-08-24
關鍵字
Keywords
螢光衰減、膠體性有機物、酸鹼值、腐植酸、離子強度
COM, benzo(h)quinoline, pH, ionic strength, HA, fluorescence quenching
統計
Statistics
本論文已被瀏覽 5688 次,被下載 1899
The thesis/dissertation has been browsed 5688 times, has been downloaded 1899 times.
中文摘要
本研究,以螢光衰減法針對多種的腐植酸與一種含氮的三環PAHs(benzo(h)quinoline)的結合係數進行量測,此外以另外一種三環的parent-PAHs(phenanthrene)的結合係數作為對照,並且探討pH值及離子強度對於KCOC的影響進行研究。由研究結果顯示,越趨向高pH值時,由於腐植酸的疏水性會逐漸減弱,因此藉由疏水性作用(hydrophobic interaction)與腐植酸結合的phenanthrene之KCOC值會隨著pH值的增加有下降的現象。benzo(h)quinoline的KCOC值隨pH值變化趨勢,在接近benzo(h)quinoline的pKb附近會有KCOC的最大值。當pH值低於pKb時,benzo(h)quinoline會變成一種質子化的陽離子狀態,稱之為benzo(h)quinolinium,在此區域主要的結合機制為離子交換作用(ion exchange interaction),此時當pH值增加時會存在較多的吸附位基,因此使得KCOC值會隨著pH值而增加;當pH值大於pKb時則會受到不同機制的主導,中性型態的benzo(h)quinoline此時為主要優勢物種,結合機制也轉變成了疏水性作用。由於不同pH值下, 主要優勢物種會有所不同,以單一波長量測,對於KCOC值無法做全程的觀測,因此藉由兩組不同波長的同時量測螢光值以求得較為準確可信的KCOC值。此外,在探討pH值對不同HA與PAHs間KCOC之影響時,也發現HA官能基組成亦為一種影響因素。最後對於離子強度的影響進行初步的探討,由結果顯示加入離子強度後benzo(h)quinoline的KCOC值會降低,但隨pH值的變化仍有相同的趨勢存在。藉由本研究之結果,對於疏水性有機污染物在水體環境中的傳輸與宿命能夠提供給數值模擬上重要的參數。
Abstract
In this study, we measured the binding constant, KCOC, between several humic acids and benzo(h)quinoline, a nitrogen contained PAHs via using fluorescence quenching method. KCOC of humic acids and phenanthrene, a parent PAHs, is also studied in comparison. Moreover, pH and ionic strength effect on the KCOC were investigated. According to our results, the phenanthrene’s KCOC decreases as the pH increases due to the lower hydrophobicity of humic acid in higher pH values. The variation of benzo(h)quinoline’s KCOC with pH exhibits a more complicated trend, with a maximum value at pH close to the pKb of benzo(h)quinoline. For pH lower than pKb, benzo(h)quinoline is protonated to be benzo(h)quinolinium, a cation, so that the ionic exchange is the dominant prosess in sorption mechanism. Therefore, the binding sites of humic acid increase with pH such that the KCOC increases with pH. In contrast, different mechanism involved in the binding for pH higher than pKb, neutral benzo(h)qunoline becomes dominant and hydrophobic interaction controls the binding prosess in sorption mechanism. At last, the composition of different functional groups of humic acid is also found significant in the binding affinity of benzo(h)qunoline or phenanthrene. Moreover, the benzo(h)qunoline’s KCOC exhibits decreasing trend with increasing magnesium ionic strength because of the reduction of molecular size as well as the benzo(h)qunoline binding sites of humic acid. Findings from this study could provide valuable information for numerical simulation of transport and fates of HOPs in aquatic environment.
目次 Table of Contents
目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅷ
附表目錄 Ⅸ
符號說明 XI


第一章 前言 1
第二章 文獻回顧 4
2-1 膠體性有機物 4
2-2 腐植質 5
2-3 疏水性有機污染物 7
2-4 多環芳香烴碳氫化合物 9
2-5 水環境因子對HOPs吸附行為之影響 10
第三章 實驗材料及方法 15
3-1 實驗材料 15
3-2 實驗方法 17
3-2-1 實驗方法的選用 17
3-2-3 螢光理論校正公式 20
3-3 實驗步驟 21
第四章 結果與討論 24
4-1 螢光衰減法之建立 24
4-1-1 螢光衰減動力學 24
4-1-2 腐植酸溶解動力學 27
4-1-4 螢光衰減法的之適用性 28
4-2 pH值對phenanthrene之KCOC的影響 29
4-2-1 pH值對phenanthrene-LHA結合係數的影響 29
4-2-2 pH值效應對phenanthrene-SHHA結合係數的影響 31
4-2-3 腐植酸種類對phenanthrene之KCOC之影響 32
4-3 pH值效應對benzo(h)quinoline之KCOC的影響 34
4-3-1 不同種類PAHs與腐植酸結合機制之比較 34
4-3-2 benzo(h)quinoline-HA之KCOC隨pH值變化的趨勢 37
4-3-4 高pH值下不同種類腐植酸對KCOC影響機制 47
4-3-5 低pH值下不同種類腐植酸對KCOC影響機制 49
4-4 離子強度的效應 52
4-4-1 離子強度效應於PAHs-COC結合係數的討論 52
4-4-2 腐植酸與鎂離子反應動力學 53
4-4-3 離子強度對benzo(h)quinoline之KCOC的效應 55
4-4-4 本實驗數據與相關文獻比較 57
第五章 結論與建議 59
5-1 結論 59
5-2 建議 61
參考文獻 62
附錄 70
參考文獻 References
Brunk, B. K., Jirka, G. H. and Lion, L. W. (1997) Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrence:Implications for pollutant trapping in estuaries. Environ. Sci. Technol., 31, 119-125.

Carter, C. W. and Suffet, I. H. (1982) Binding of DDT to dissolved humic materials. Environ. Sci. Technol., 16, 735-740.

Chefetz, B., Deshmukh, A. P. and Hatcher, P. G. (2000) Pyrene sorption by natural organic matter. Environ. Sci. Technol., 34, 2925-2930.

Chen, H. Y. and Preston, M. R. (2004) Dissolution of azaarenes from urban aerosols. Atmos. Envirot., 38, 1023–1028.

Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1992) Complexation of 1-naphthol by humic and fulvic acids. Soil Sci. Soc. Am. J., 56, 67-73.

Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1994) Fluorescence lifetime measurements of fluoranthere, 1-naphthol, and napropamide in the presence of dissolved humic acid. Environ. Sci. Technol., 28, 1582-1588.

Chin, Y. P., Aiken, G. R. and O’Loughlin, E. (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol., 28, 1853-1858.

Chin, Y. P., Aiken, G. R. and Danielsen, K. M. (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol., 31, 1630-1635.

Chiou, C. T., Schmedding, D. W. and Manes, M. (1982) Partitioning of organic compounds between soil organic matter and water. Environ. Sci. Technol., 16, 4-10.

Chiou, C. T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Technol., 19, 57-62.

Chiou, C. T., Shoup, T. D. and Poter, P. E. (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org. Geochem., 8, 9-14.

Chiou, C. T., Malcolm, R. L., Birnton, T. I. and Kile, D. E. (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol., 20, 502-508.

Dzombak, D. A. and Luthy, R. G. (1984) Estimating adsorption of polycylic aromatic hydrocarbons on soils. Soil Sci., 137, 292-308.

Danielsen, K. M., Chin, Y-P, Buterbaugh, J. S., Gustafson, T. L. and Traina, S. J. (1995) Solubility enhancement and fluorescence quenching of pyrene by humic substances: The effect of dissolved oxygen on quenching processes. Environ. Sci. Technol., 29, 2162-2165.

Engebretson R. R., von Wandruszka, R. (1998) Kinetic aspects of cation enhanced aggregation in aqueous humic acids. Environ. Sci. Technol., 32, 488–493.

Futoma, D. J., Smith, S. R., Smith, T. E. and Tanaka, J. (1981) The analysis of polycyclic aromatic hydrocarbons in water system, CRC Press, Florida.

Gauthier, T. D., Shane, E. C., Guerin, W. F., Seitz, W. R. and Grant, C. L. (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hdyrocarbons binding to dissolved humic matterials. Environ. Sci. Technol., 20, 1162-1166.

Gauthier, T. D., Seitz, W. R. and Grant, C. L. (1987) Effects of Structural and compositional variations of dissolved humic materials on Pyrene Koc values. Environ. Sci. Technol., 21, 243-238.

Gustafsson, Ö. , Nilsson, N. and Bucheli, T. D. ( 2001) Dynamic colloid
water partitioning of pyrene through a coastal Baltic spring bloom.
Environ. Sci. Technol., 35, 4001–4006.

Helweg, C., Nielsen, T. and Hansen, P. E. (1997) Determinstion of octanol-water partition coefficients of polar polycyclic aromatic compound (N-PAC) by high performance liquid chromatography. Chemosphere, 34, 1673-1684

Jones, K. D. and Tiller, C. L. (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid:a comparison of dissolved and clay bound humic. Environ. Sci. Technol., 33, 580-587.

Jonker, M. T. O. and Koelmans, A. A. (2001) Polyoxymethylene soild phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol., 35, 3742-3748

Karthikeyan, K. G. and Chorover, J. (2002) Humic acid complexation of basic and neutral polycyclic aromatic compounds. Chemosphere, 48, 955-964.

Kuo, L. J. and Lee, C. L. (2005) Stage change in binding of pyrene to selected humic substances under different ionic strengths. Environ. Toxicol. Chem., 24, 58-66.

Lakowicz, J. R. (1983) Principles of fluorescence spectroscopy, Plenum Press, New York.

Landrum, P. F. Nihart, S. R., Eadie, B. J. and Gardner, W. S. (1984) Reverse-phase separation method for determining pollutant binding to aidrich humic acid and dissolved organic carbon of natural water. Environ. Sci. Technol., 18, 187-192.

Lassen, P. and Carlsen, L. (1997) Solubilization of phenanthrene by humic acids. Chemosphere, 34, 817-825.

Lassen, P,. Doulsen, M. E., Frank, S-L and Carlsen, L. (1997) Leaching of selected PAH’s and hetero-analoguts from an organic matrix into synthetic ground water. Influence of dissolved humic material. Chemosphere, 34, 335-344.

Lee, C. L. and Kuo, L. J. (1999) Quantification of the dissolved organic matter effect on the sorptin of hydrophobic organic pollutant: application of an overall mechanistic sorption model. Chemosphere, 38, 807-821.

Lee, C. L., Kuo, L. J., Huang, H. T. and Hsieh, P. C. (2003) Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances:three-stage variation model. Wat. Res., 37, 4250-4258.

Lee, M. L., Novotny, M. V. and Bartle, K. D. (1981) Analytical chemistry of polycyclic aromatic compounds, Academic Press, New York.

Li, X. P. and McGuffin, V. L. (2004) Selective fluorescence quenching of nitrogen-containing polycyclic aromatic hydrocarbons by aliphatic amines. Ana.Chim.Acta., 526, 155-162.

Magee, B. R., Lion, L. W. and Lemly, A. T. (1991) Transport of dissolved organic macromolecules and their effect on the transport of Phenanthrene in porous media. Environ. Sci. Technol.,25, 323-331.


Manunza, B., Deiana, S., Maddau, v., Gessa,C. and Seeber, R. (1995) Transport of dissolved organic macromolecules and their effect on transport of phenanthrene in porous media. Environ. Sci. Technol., 59, 1570-1574.

McCarthy, J. F. and Jimenez, B. D. (1985) Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci. Technol., 19, 1072-1076.

Means, J. C. (1995) Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem., 51, 3-16.

Miller, M. M., Wasik, S. P., Huang, G-L, Shiu, W-Y and Mackay, D. (1985) Ralationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol., 9, 522-529.

Morra, M. J., Corapcioglu, M. O., Wandruszka, R. V., Marshall, D. B. and Topper, K. (1990) Fluorescence quenching and polarization studies of Naphthalene and 1-Naphthol interaction with humic acid. Soil Sci. Soc. Am. J., 54, 1283-1289.

Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L. and Wietsma, T. W. (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 28, 1291-1299.

Nielsen, T., Helweg, C., Siigur, K. and Kirso, U. (1997) Application of HPLC capacity coefficients to characterize the sorption of polycyclic aromatic compounds to humic acid. Environ. Sci. Technol., 44, 1873–1881.

Österberg, R., Szajdak, L. and Mortensen, K. (1994) Temperature dependent restructuring of fractal humic acids: A proton dependent
process. Environ. Int., 20, 77–80.

Paolis, F. D. and Kukkonen, J. (1997) Binding of organic pollutants of humic and fulvic acids : Influence of pH and the structure of humic material. Chemosphere, 34, 1693-1704.
Parker, C. A. (1968) Photoluminescence of solutions. pp. 222. Elsevier Amsterdam.

Perminova, I. V., Grechishcheva, N. and Petrosyan, V. (1999) Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons:relevance of molecular descriptors. Environ. Sci. Technol., 33, 3781-3787

Rav-Acha, Ch. and Rebhun, M. (1992) Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment. Wat. Res., 26, 1645-1654.

Rebhun, M., Smedt, F. DE and Rwetabula, J. (1996) Dissolved humic substances for remediation of sites contaminated by organic pollutants: Binding-desorption model prdicitions. Wat. Res., 30, 2027-2038.

Schlautman, M. A. and Morgan, J. J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol., 27, 961-969.

Shen, Y. H. (1999) sorption of natural dissolved organic matter on soil. Chemosphere, 38, 1505-1515.

Schulten, H. R. and Schnitzer, M. (1997) Chemical model structures for soil organic matter and soils. Soil sci. 162, 115-130.

Shimziu, Y. and Liljestrand, H. M. (1991) Sorption of polycyclic aromatic hydrocarbons onto natural solids: Determination by fluorescence quenching method. Wat. Sci. Technol., 23, 427-436.

Snoeyink, V. L. and Jenkins, D. (1980) Water Chemistry. John Wiley & Sons, Inc.

Sparks, D. L. (1995) Environmental soil chemistry. Academic Press, San Diego.

Stevenson, F. J. (1994) Humus Chemistry: genesis, composition, reactions, 2nded., John Wiley & Sons, New York.

Tiller, C. L. and Jones, K. D. (1997) Effect of dissolved oxygen and light exposure on determination of Koc values for PAHs using fluorescence quenching. Environ. Sci. Technol., 31, 424-429.

Traina, S. J., Spontak, D. A. and Logan, T. J. (1989) Effect of cations on complexation of Naphthalene by water-soluble organic carbon. Environ. Qual., 18, 221-227.

Voice, T. C., Rice, C. P. and Weber, W. J., Jr. (1983) Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ. Sci. Technol. 17,513-518.

Wershaw, R. L. (1986) A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contamin. Hydro. 1, 29-45.

Wershaw, R. L. (1989) Application of a membrane model to the sorptive interactions of humic substances. Environ. Health Persp., 83, 191-203.

Wershaw, R. L. (1993) Model for humics in soils and sediments. Environ. Sci. Technol., 27, 814-816.

Wild, S. R. and Jones, K. C. (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ.l pollut., 88, 91-108.

Zhou, J. L., Rowland, S. and Mantoura, R. F. C. (1994) The formation of humic coatings om mineral particles under simulated estuarine conditions - a mechanistic study. Wat. Res., 28, 571-579.

Zhou, J. L. and Rowland, S. J. (1997) Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Wat. Res., 31, 1708-1718.

王詩銘 (2004),南海北部有機碳化學之生地化研究,國立中山大學海洋地質及化學研究所碩士論文。

林俊宏 (2004),腐植酸混合效應對多環芳香烴碳氫化合物與溶解性有機物結合係數之影響--動力學硏究,國立中山大學海洋海洋環境及工程研究所碩士論文。

陳鎮東 (1994),海洋化學,國立編譯館,台北市。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code