Responsive image
博碩士論文 etd-0824107-115352 詳細資訊
Title page for etd-0824107-115352
論文名稱
Title
Tubocapsanolide A 化合物在大腸癌細胞中的作用
The effect of Tubocapsanolide A on the colorectal cancer cell lines
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2007-08-24
關鍵字
Keywords
龍珠、天然藥物
Tubocapsanolide A, withanolide compound
統計
Statistics
本論文已被瀏覽 5660 次,被下載 3274
The thesis/dissertation has been browsed 5660 times, has been downloaded 3274 times.
中文摘要
Withanolide compounds (Tubocapsanolide A, B, and C)由Tubocapsium anomalum萃取,而它過去已被報導出具有抑制細胞生長的特性,且也被運用在臨床治療上甚至是一般民間用藥。然而他在細胞中的作用機制卻仍有些還未被研究清楚。因此我們將Tubocapsanolide A, B and C分別處理在大腸癌細胞中,HT29和HCT116,利用MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay 得到可抑制50%細胞的藥物濃度 (IC50)。在這三種化合物之中我們發現Tubocapsanolide A (TA)的抑制效果最好,因此我們之後則利用TA作為此篇論文的研究。結果我們發現在加入TA後可造成caspase 3和PARP的活化,伴隨著處理的時間和劑量的增加細胞凋亡(Apoptosis)的現象也會增加。對於有正常的p53功能的細胞HCT116似乎也對TA引發的細胞凋亡的作用也較p53突變的HT29來的敏感。另一方面我們也利用較低劑量(1μM)的TA分別處理在HCT116和HT29中,也利用了流式細胞儀觀察到TA使HCT116的細胞週期停在G1;而HT29停在G2/M期。這些或許也指出p53參與了TA作用機制。另外也發現TA也會造成sub-G1的累積和reactive oxygen species (ROS)的增加。一旦我們加入抗氧化劑N-Acetyl-L-cysteine (NAC)以後,可使原本被TA所引發的細胞毒殺作用被擷抗。在我們的結果顯示了TA可促進細胞凋亡並且引發細胞內ROS的產生,造成細胞損壞使細胞粒線體膜電位的改變並且活化caspase等現象,最後造成細胞凋亡。
Abstract
The withanolid compounds (Tubocapsanolide A, B, and C) were purify from Tubocapsium anomalum and shown with cell growth inhibitory property. However, the molecular mechanisms of withanolide type compounds on the cell have not been fully clarified. Tubocapsanolide A, B, and C (TA, TB, and TC) of antiproliferative activity on human colorectal adenocarcinoma cells, HT29 and HCT116, were tested and the inhibitory concentration of 50% cell viability (IC50) for these compounds was determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. We found that TA has the best inhibitory effect in these compounds. Therefore we utilized TA to study the mechanism of cell toxicity. The caspase 3 and PARP cleavage experiment results indicated that TA induced apoptosis was time and dose dependent. Cells with functional p53 (HCT116) are more sensitive to TA compared to the mutant p53 cells (HT29). With low dose TA treatment, HCT116 and HT29 are arrested at G1 and G2/M phase respectively. We also found that TA induced sub-G1 accumulation and reactive oxygen species (ROS) release with flow cytometry analysis. Pretreatment of N-Acetyl-L-cysteine (NAC), an antioxidant agent, can reverse the antiproliferation effect by TA. Our results indicated that TA can induce cell apoptosis and intracellular ROS generation. The ROS triggers cells damage and decreases the mitochondria membrane potential and thus induce cell apoptosis.
目次 Table of Contents
CHINESE ABSTRACT I
ENGLISH ABSTRACT II
ABBREVIATION III
1 INTRODUCTION 1
1.1General background information 1
1.2 General statement about withanolide compounds 2
1.3 p53 and cancer therapy 8
1.4 Cell death 9
2 MATERIALS AND METHODS 11
2.1 Withanolide compounds (Tubocapsanolide A, B, and C) 11
2.2 Cell lines and cell culture methods 11
2.3 MTT cell proliferation assay 11
2.4 Drug treatment assay 12
2.5 Protein preparation and quantification 13
2.6 Western blot analysis 14
2.7 Flow cytometric analysis 16
2 .7.1 Measurement of DNA content (cell cycle and sub-G1 accumulation) 16
2 .7.2 Annexin V-FITC and PI dual-color staining 16
2 .7.3 Measurement of intracellular ROS 17
2.8 Cell counting and dye exclusion viability assay 17
2.9 Nuclear staining with DAPI 17
2.10 Statistical analysis 17
3 RESULTS 18
3.1 The cytotoxic effect of Tubocapsanolide compounds (Tubocapsanolide A, B, and C) 18
3.2 Tubocapsanolide A induced cell apoptosis 18
3.3 Tubocapsanolide A induced reactive oxygen species (ROS) generation 19
3.4 Tubocapsanolide A induced nuclear condensation 20
3.5 Caspase activation is involved in Tubocapsanolide A mechanism 21
3.6 Tubocapsanolide A induced cell cycle arrest in HT29 and HCT116 21
3.7 p53 is involved in Tubocapsanolide A mechanism 22
4 DISCUSSION 23
4.1 Cytotoxic effect of Tubocapsanolide A 23
4.2 Low concentration (1 μM) of Tubocapsanolide A induced cell cycle arrest 24
4.3 Tubocapsanolide A induced reactive oxygen species (ROS) generation and apoptosis 25
i. Middle concentration (5 μM) 25
ii. High concentration (15 μM) 25
5 CONCLUSIONS 27
6 REFERENCES 29
7 FIGURES AND TABLES 35
Figure 1. Structure of Tubocapsanolide compounds (Tubocapsanolide A, B, and C). 1
Figure 2. Structure of withanolide compounds were reported in references. 4
Figure 3. The major functional domains of the p53 protein. 8
Figure 4. Wt-p53 versus mutant p53: two sides of the same coin. 9
Figure 5. Simplified representation of the two main signalling pathways of programmed cell death. 10
Figure 6. Major pathways to caspase-dependent and caspase-independent cell death 10
Figure 7. The cytotoxic effect for Tubocapsanolide compounds (Tubocapsanolide A, B, and C) in colorectal cancer cells. 31
Figure 8. Tubocapsanolide A induced cell apoptosis. 34
Figure 9. Tubocapsanolide A induced sub-G1 accumulation. 36
Figure 10. Tubocapsanolide A induced reactive oxygen species (ROS) generation. 39
Figure 11. Antioxidant repressed reactive oxygen species (ROS) generation and increased cell proliferation. 46
Figure 12. Tubocapsanolide A induced nuclear condensation. 47
Figure 13. Caspase activation is involved in Tubocapsanolide A mechanism. 53
Figure 14. Tubocapsanolide A induced cell cycle arrest. 55
Figure 15. Western blot analysis of p53, p21, 15, and p27 in HCT116 cells with dose course of TA treatment. 61
Figure 16. The structure of compound 5 from W. Somnifera leaf. 23
Figure 17. The structure of compound 5 from Datura metel L. (Solanaceae). 24
Table 1. The IC50 of Tubocapsanolide compounds for HT29 cytotoxicity
33
Table 2. The IC50 of Tubocapsanolide A for HT29 and HCT116 cytotoxicity 33
Table 3. Tubocapsanolide A induced cell cycle arrest. 60
參考文獻 References
1. Hsieh, P. W., Huang, Z. Y., Chen, J. H., Chang, F. R., Wu, C. C., Yang, Y. L., Chiang, M. Y., Yen, M. H., Chen, S. L., Yen, H. F., Lubken, T., Hung, W. C., and Wu, Y. C. (2007) J Nat Prod
2. Yang, H., Shi, G., and Dou, Q. P. (2007) Mol Pharmacol 71(2), 426-437
3. Senthil, V., Ramadevi, S., Venkatakrishnan, V., Giridharan, P., Lakshmi, B. S., Vishwakarma, R. A., and Balakrishnan, A. (2007) Chem Biol Interact
4. Sen, N., Banerjee, B., Das, B. B., Ganguly, A., Sen, T., Pramanik, S., Mukhopadhyay, S., and Majumder, H. K. (2007) Cell Death Differ 14(2), 358-367
5. Malik, F., Singh, J., Khajuria, A., Suri, K. A., Satti, N. K., Singh, S., Kaul, M. K., Kumar, A., Bhatia, A., and Qazi, G. N. (2007) Life Sci
6. Kaileh, M., Vanden Berghe, W., Heyerick, A., Horion, J., Piette, J., Libert, C., De Keukeleire, D., Essawi, T., and Haegeman, G. (2007) J Biol Chem 282(7), 4253-4264
7. Yokota, Y., Bargagna-Mohan, P., Ravindranath, P. P., Kim, K. B., and Mohan, R. (2006) Bioorg Med Chem Lett 16(10), 2603-2607
8. Mathur, R., Gupta, S. K., Singh, N., Mathur, S., Kochupillai, V., and Velpandian, T. (2006) J Ethnopharmacol 105(3), 336-341
9. Ichikawa, H., Takada, Y., Shishodia, S., Jayaprakasam, B., Nair, M. G., and Aggarwal, B. B. (2006) Mol Cancer Ther 5(6), 1434-1445
10. Tohda, C., Kuboyama, T., and Komatsu, K. (2005) Neurosignals 14(1-2), 34-45
11. Kuboyama, T., Tohda, C., and Komatsu, K. (2005) Br J Pharmacol 144(7), 961-971
12. Cheng, C. C., Yang, S. M., Huang, C. Y., Chen, J. C., Chang, W. M., and Hsu, S. L. (2005) Cancer Chemother Pharmacol 55(6), 531-540
13. Mohan, R., Hammers, H. J., Bargagna-Mohan, P., Zhan, X. H., Herbstritt, C. J., Ruiz, A., Zhang, L., Hanson, A. D., Conner, B. P., Rougas, J., and Pribluda, V. S. (2004) Angiogenesis 7(2), 115-122
14. Jayaprakasam, B., Zhang, Y., Seeram, N. P., and Nair, M. G. (2003) Life Sci 74(1), 125-132
15. Devi, P. U., Sharada, A. C., and Solomon, F. E. (1995) Cancer Lett 95(1-2), 189-193
16. Kaileh, M., Vanden Berghe, W., Heyerick, A., Horion, J., Piette, J., Libert, C., De Keukeleire, D., Essawi, T., and Haegeman, G. (2006) J Biol Chem
17. Bargagna-Mohan, P., Ravindranath, P. P., and Mohan, R. (2006) Invest Ophthalmol Vis Sci 47(9), 4138-4145
18. Chang, H. C., Chang, F. R., Wang, Y. C., Pan, M. R., Hung, W. C., and Wu, Y. C. (2007) Mol Cancer Ther 6(5), 1572-1578
19. Ma, C. Y., Williams, I. D., and Che, C. T. (1999) J Nat Prod 62(10), 1445-1447
20. Leyon, P. V., and Kuttan, G. (2004) Phytother Res 18(2), 118-122
21. Choudhary, M. I., Yousaf, S., Ahmed, S., and Yasmeen, K. (2005) Chem Biodivers 2(9), 1164-1173
22. Vousden, K. H., and Lane, D. P. (2007) Nat Rev Mol Cell Biol 8(4), 275-283
23. Kim, E., and Deppert, W. (2007) Oncogene 26(15), 2185-2190
24. Selivanova, G., and Wiman, K. G. (2007) Oncogene 26(15), 2243-2254
25. Strano, S., Dell'Orso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A., and Blandino, G. (2007) Oncogene 26(15), 2212-2219
26. Strano, S., Dell'Orso, S., Mongiovi, A. M., Monti, O., Lapi, E., Di Agostino, S., Fontemaggi, G., and Blandino, G. (2007) Head Neck 29(5), 488-496
27. Green, D. R., and Evan, G. I. (2002) Cancer Cell 1(1), 19-30
28. Fesik, S. W. (2005) Nat Rev Cancer 5(11), 876-885
29. Kroemer, G., and Martin, S. J. (2005) Nat Med 11(7), 725-730
30. Padmavathi, B., Rath, P. C., Rao, A. R., and Singh, R. P. (2005) Evid Based Complement Alternat Med 2(1), 99-105
31. Ma, L., Xie, C. M., Li, J., Lou, F. C., and Hu, L. H. (2006) Chem Biodivers 3(2), 180-186
32. Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A., and Finkel, T. (1996) Proc Natl Acad Sci U S A 93(21), 11848-11852
33. Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W., and Aaronson, S. A. (2003) Mol Cell Biol 23(23), 8576-8585
34. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B. (1997) Nature 389(6648), 300-305
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code