Responsive image
博碩士論文 etd-0824108-215353 詳細資訊
Title page for etd-0824108-215353
論文名稱
Title
分子動力學結合火炎演算法及密度泛函理論研究二氧化鈦奈米團簇之結構與催化特性
A combination of Molecular dynamics, FIRE algorithm, and Density functional theory on structural and catalytic characteristics of Titania nanoparticle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-05
繳交日期
Date of Submission
2008-08-24
關鍵字
Keywords
分子動力學、密度泛函理論、火炎演算法
Molecular Dynamics, Density functional theory, FIRE algorithm
統計
Statistics
本論文已被瀏覽 5709 次,被下載 2011
The thesis/dissertation has been browsed 5709 times, has been downloaded 2011 times.
中文摘要
本文以分子動力學結合火炎演算法建構二氧化鈦奈米氧化物團簇之結構,再應用密度泛函理論研究其結構與電子性質。密度泛函理論在處理火炎演算法所求得之小奈米團簇時可得結構穩定且立體之結構。對於尺寸較大之立體結構而言,對稱性高的團簇結構將維持原狀,對稱性不高的團簇(n=5,6)會變成大表面積、低配位數之結構。此外我們將用此平衡結構討論總電子態密度(Total Density of States, TDOS)、部份電子態密度(Partial Density of States, PDOS)及福井方程式(Fukui function)等電荷分佈情形。
最後我們將催化分子吸附於奈米團簇上討論團簇的尺寸變化對催化的影響,可觀察到團簇的變化對分子之碎片結構(fragments)有明顯的效應產生,對完整的分子則無顯著的影響,並且將此結果比對表面催化的性質。
Abstract
In order to understand the structural and electronic properties of titanium oxide nanoparticles of different sizes, the FIRE algorithm combining the simulated annealing method is employed to find the structures of TinO2n (n=1-6) nanoparticles with the global minimum potential energy. To deeply understand electronic properties, the relaxation structures of TinO2n (n=1-6) nanoparticle from previous method will be recalculated by density functional theory (DFT) method. The Fukui function, Frontier Molecular Orbital and density of state of TinO2n (n=1-6) nanoparticles are discussed for understanding the size effect of TiO2 nanoparticles on chemical reactivity.
The adsorption and dissociation energy mechanism of the HN3 molecule and its fragments are also discussed and are compared with the mechanism about HN3 on the anatase surface.
目次 Table of Contents
目錄
目錄..……………………………………………………………………...I
圖目錄..………………………………………………………………...III
表目錄..………………………………………………………………….V
符號說明………………………………………………………………..VI
中文摘要……………………………………………………………...VIII
英文摘要………………………………………………………………..IX
第1章 緒論………….……………………………………………….....1
1.1 研究動機與目的 ……………………………………………………....1
1.2 二氧化鈦簡介 …………………………………………………………4
1.3 文獻回顧..………………………………………………………………5
1.4 本文架構..………………………………………………………………9
第2章 分子動力學理論方法..………………………………………..10
2.1 勢能函數..…………………………………………………………..11
2.1.1 白金漢勢能函數..……………………………………………...11
2.2 運動方程式..………………………………………………………..12
2.3 積分法則..…………………………………………………………..13
2.4 時間步階選取………………………………………………………14
2.5 溫度修正……………………………………………………………15
2.5.1 反正規化法(Rescaling method) ………………………………15
2.5.2 諾斯-胡佛?皕讀k(Nosé-Hoover thermostat) …………………16
2.6 週期性邊界…………………………………………………………18
2.7 數值方法……………………………………………………………19
2.7.1截斷半徑法(Cut-off method) …………………………………..20
2.7.2物理參數與無因次化…………………………………………..22
第3章 火炎演算法與密度泛函理論…………………………………25
3.1 火炎演算法理論……………………………………………………25
3.2 密度泛函理論………………………………………………………26
3.2.1電子密度..……………………………………………………….26
3.2.2 Thomas-Fermi model…………………………………………....27
3.2.3 Hohenberg-Kohn model ………………………………………..27
3.2.4 Kohn-Sham equation.........................…………………………...27
第4章 結果分析與討論………………………………………………31
4.1 二氧化鈦奈米團簇結構與電性分析………………………………31
4.1.1物理模型建構……………………………………………..……31
4.1.2 結構與能量分析………………………………………….……34
4.1.3 軌域混層分析………………………………………………….39
4.1.4 活化區域分析………………………………………………….47
4.2 催化分析………………………………………………….. ……….50
4.2.1氫疊氮酸吸附解離……………………………………………..50
4.2.2 催化結果比較………………………………………………….51
第5章 結論與建議……………………………………………………59
5.1 結論…………………………………………………………………59
5.2 建議與未來展望……………………………………………………61
參考文獻.……………………………………………………………….64
參考文獻 References
[1] J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong and F. Stellacci, "Superwetting nanowire membranes for selective absorption " Nat. Nanotechnol. 3, 332 - 336 (2008).
[2] J.-H. Park, G. v. Maltzahn, L. Zhang, Michael P. Schwartz, E. Ruoslahti, S. N. Bhatia and M. J. Sailor, "Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging," Adv. Mater. 20, 1630-1635 (2008).
[3] Y. M. Hon, K. Z. Fung and M. H. Hon, "Effect of Temperature and Atmosphere on Phase Stability and Morphology of LiMn2O4 Powder Synthesized by Citric Acid Gel Process," J. Ceram. Soc. Jpn. 10 (5), 462-468 (2000).
[4] Y. M. Hon, H. Y. Chung, K. Z. Fung and M. H. Hon, "NMR and FTIR Investigation of Spinel LiMn2O4 Cathode Prepared by Citric Acid Gel Process," J. Solid. State. Chem. 160, 368-376 (2001).
[5] F.-C. Wu, C.-C. Wan, Y.-Y. Wang, L.-D. Tsai and K.-L. Hsueh, "Improvement of Pt-Catalyst Dispersion and Utilization for Direct Methanol Fuel Cells Using Silane Coupling Agent," J. Electrochem. Soc. 154 (6), 528-532 (2007).
[6] M. Grätzel, "Photoelectrochemical cells," Nature. 414 (15), 338-344 (2001).
[7] A. Vittadini, A. Selloni, F. P. Rotzinger and M. Gratzel., "Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations," J. Phys. Chem. B. 104, 1300-1306 (2000).
[8] M. Nilsing, S. lunell, P. Persson and L. Ojamae., "Phosphonic acid adsorption at the TiO2 anatase(101) surface investigated by periodic hybrid HF-DFT computations," Surf. Sci. 582, 49-60 (2005).
[9] Santos, C. dos, Z. Schpector, Julio, Imamura and P. M., "Chemical transformation of abietic acid to new chiral derivatives," J. Braz. Chem. Soc. 14, 6 (2003).
[10] J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee and M. G. Kang, "Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate " J. Electrochem. Soc. 155 (7), F145-F149 (2008 ).
[11] L. Zou and Y. Luo, "Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst," Chem. Eng. Process. 45, 959-965 (2006).
[12] T. A. McMurray., P. S. M. Dunlop and J. A. Byrne, "The photocatalytic degradation of atrazine on nanoparticulate TiO2 films," J. Photochem. Photobiol., A. 182, 43-51 (2006).
[13] A. B. Araujo, O. P. A. Junior, E. M. Vieira, J. P. S. Valente, P. M. Padilha and A. O. Florentino, "Photodegradation of Soluble and Emulsive Cutting Fluids using TiO2 as Catalyst," J. Braz. Chem. Soc. 17 (4), 737-740 (2006).
[14] C. A. Rives S and D.-B. F, "Growth of Co isolated clusters in the gas phase: Experiment and molecular dynamics simulations " Phys. Rev. B. 77 (8), 085407.
[15] D. F, H. S and X. Y, "Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene " J. Am. Chem. Soc. 130 (6), 1932-1943 (2008).
[16] E. R. B. Yoshiyuki Matsuda, "On the Titanium Oxide Neutral Cluster Distribution in the Gas Phase: Detection through 118 nm Single-Photon and 193 nm Multiphoton Ionization," J. Phys. Chem. A. 109, 314-319 (2005).
[17] L. S. W. Hongbin Wu, "Electronic structure of titanium oxide clusters: TiOy (y=1-3) and (TiO2)n (n=1-4)," J. Chem. Phys 107 (20), 8221-8228 (1997).
[18] K. Demyk, D. V. Heijnsbergen, G. v. Helden and G. Meijer, "Experimental study of gas phase titanium and aluminum oxide clusters," Astron Astrophys 420, 547-552 (2004).
[19] R. B. F. Wen Yu, "Formation and Fragmentation of Gas-Phase Titanium/Oxygen Cluster Positive Ions," J. Am. Chem. SOC. 112, 7126-7133 (1990).
[20] Z. H. J and W. L. S., "Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n = 1-10) Using Photoelectron Spectroscopy " J. Am. Chem. Soc. 129 (10), 3022-3026 (2007).
[21] K. L. Yeung, A. J. Maira, J. Stolz, E. Hung, N. K.-C. Ho, A. C. Wei, J. Soria, K.-J. Chao and P. Yue, "Ensemble effects in nanostructured TiO2 used in the gas-phase photooxidation of trichloroethylene," J. Phys. Chem. B. 106, 4608-4616 (2002).
[22] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode " Nature. 238, 37 - 38 (1972).
[23] 申泮文 and 車雲霞, "無機化學叢書," 北京:科學出版社 第八卷 (1998).
[24] "http://puregreencoatings.com/images/pgc_science.png."
[25] A. Eichler, F. Mittendorfer and J. Hafner, "Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals," Phys. Rev. B. 62 (7), 4744 (2000).
[26] R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov and F. Besenbacher, "Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110)," Phys. Rev. Lett. 87 (26), 266104 (2001).
[27] J. A. White, D. M. Bird and M. C. Payne, "Dissociation of H2 on W(100)," Phys. Rev. B. 53 (3), 1667 (1996).
[28] J. Harris and S. Andersson, "H2 Dissociation at Metal Surfaces," Phys. Rev. Lett. 55 (15), 1583 (1985).
[29] P. A. Gravil, D. M. Bird and J. A. White, "Adsorption and Dissociation of O2 on Ag(110)," Phys. Rev. Lett. 77 (18), 3933 (1996).
[30] K. Honkala and K. Laasonen, "Oxygen Molecule Dissociation on the Al(111) Surface," Phys. Rev. Lett. 84 (4), 705 (2000).
[31] K. Kato and T. Uda, "Chemisorption of a single oxygen molecule on the Si(100) surface: Initial oxidation mechanisms," Phys. Rev. B. 62 (23), 15978 (2000).
[32] D. A. Outka, J. Stohr, W. Jark, P. Stevens, J. Solomon and R. J. Madix, "Orientation and bond length of molecular oxygen on Ag(110) and Pt(111): A near-edge x-ray-absorption fine-structure study," Phys. Rev. B. 35 (8), 4119 (1987).
[33] J. T. Stuckless, C. E. Wartnaby, N. Al-Sarraf, S. J. B. Dixon-Warren, M. Kovar and D. A. King, "Oxygen chemisorption and oxide film growth on Ni(100), (110), and (111): Sticking probabilities and microcalorimetric adsorption heats," J. Chem. Phys. 106 (5), 2012 (1997).
[34] Y. Xu and M. Mavrikakis, "Adsorption and dissociation of O2 on Cu(111): thermochemistry, reaction barrier and the effect of strain," Surf. Sci. 494, 131-144 (2001).
[35] A. R. H. F. Ettema, C. F. Murtagh and H. I. Starnberg, "Photoemission spectroscopy study of the charge accumulation at the K3Sb:Cs surface," Surf. Sci. 175, 101-104 (2001).
[36] Y. Jiang and J. B. Adams, "First principle calculations of benzotriazole adsorption onto clean Cu(111)," Surf. Sci. 529, 428-442 (2003).
[37] F. Mittendorfer and J. Hafner, "A DFT study of the adsorption of thiophene on Ni(100)," Surf. Sci. 492, 27-33 (2001).
[38] S. Hong and H. Kim, "theoretical study of the bias-dependent scanning tunneling microscopy images of Pyridine on Ge(001)," J. Korean. Phys. Soc. 49 (6), 2362-2366 (2006).
[39] A. Tilocca and A. Selloni, "Structure and reactivity of water layers on defect-free and defective anatase TiO2(101) surfaces," J. Phys. Chem. B. 108, 4743-4751 (2004).
[40] I. Onal, S. Soyer and S. Senkan, "Adsorption of water and ammonia on TiO2-anatase cluster models," Surf. Sci. 600, 2457-2469 (2006).
[41] F. Allegretti, S. O. Brien, M. Polcik, D. I. Sayago and D. P. Woodruff, "Adsorption bond length for H2O on TiO2(110): A key parameter for theoretical understanding," Phys. Rev. Lett. 95, 226104 (2005).
[42] J. Goniakowski and M. J. Gillan, "the adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations," Surf. Sci. 350, 145-158 (1996).
[43] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides " Science. 293, 269-271 (2001).
[44] J. H. Wang, M. C. Lin and Y. C. Sun, "Reaction of hydrazoic acid on TiO2 nanoparticles: an experimental and computational study," J. Phys. Chem. B. 109, 5133 (2005).
[45] J. S. Lin, W. C. Chou, S. Y. Lu, G. J. Jang, B. R. Tseng and Y. T. Li, "Density Functional Study of the interfacial electron transfer pathway for monolayer adsorbed InN on the TiO2 anatase (101) surface," J. Phys. Chem. B. 110, 23460-23466 (2006).
[46] P. Persson, J. C. M. Gebhardt and S. Lunell, "The Smallest Possible Nanocrystals of Semiionic Oxides," J. Phys. Chem. B. 107, 3336-3339 (2003).
[47] M. J. Lundqvist, M. Nilsing, P. Persson and S. Lunell, "DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals," Int. J. Quantum Chem. 106 (15), 3214-3234 (2006).
[48] C. Roberts and R. L. Johnston, "Investigation of the structures of MgO clusters using a genetic algorithm," Phys. Chem. Chem. Phys. 3, 5024 - 5034 (2001).
[49] S. Hamad, C. R. A. Catlow and S. M. Woodley, "Structure and Stability of Small TiO2 Nanoparticles " J. Phys. Chem. B. 109, 15741-15748 (2005).
[50] S. M. Woodley, A. A. Sokol and C. R. A. Catlow, "Structure Prediction of Inorganic Nanoparticles with Predefined Architecture using a Genetic Algorithm," Z. Anorg. Allg. Chem. 630, 2343-2353 (2004).
[51] G. S. Shafai, S. Shetty, S. Krishnamurty, V. Shah and D. G. Kanhere, "Density functional investigation of the interaction of acetone with small gold clusters," J. Chem. Phys. 126, 014704 (2007).
[52] S. F. Li, X. Xue, G. Chen, D. W. Yuan, Y. Jia and X. G. Gong, "Ab initio studies on the reaction of O2 with Ban (n=2,5) clusters," J. Chem. Phys. 124, 224711 (2006).
[53] Q. Zeng, X. Jiang, A. Yu and G. Lu, "Growth mechanisms of silver nanoparticles: a molecular dynamics study," Nanotechnology 18, 035708 (2007).
[54] S. Chrétien and H. Metiu, "Density functional study of the interaction between small Au clusters, Aun(n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface," J. Chem. Phys. 127, 244708 (2007).
[55] M. Boronat, P. Concepción, A. Corma, S. Gonzlez, F. Illas and P. Serna, "A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO2 Catalysts: A Cooperative Effect between Gold and the Support," J. Am. Chem. Soc. 129 (51), 16230 -16237 (2007).
[56] J. Irving and J. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," J. Chem. Phys. 18, 817 (1950).
[57] J. Haile, "Dynamics simulation: Elementary Methods," John Wiley & Sons, Inc.: New York. (1997).
[58] M. Matsui and M. Akaogi., "Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2," Mol. Simul. 6, 239 (1991).
[59] A. V. Bandura and J. D. Kubicki, "Derivation of Force Field Parameters for TiO2-H2O Systems from ab Initio Calculations," J. Phys. Chem. B. 107, 11072-11081 (2003).
[60] N. A. Deskins, S. Kerisit, K. M. Rosso and M. Dupuis, "Molecular Dynamics Characterization of Rutile-Anatase Interfaces," J. Phys. Chem. C. 111 (26), 9290-9298 (2007).
[61] V. Pischedda, G. R. Hearne, A. M. Dawe and J. E. Lowther, "Ultrastablility and Enhanced Stiffness of ~6nm TiO2 Nanoanatase and Eventual Pressure-Induced Disorder on the Nanometer Scale," Phys. Rev. Lett. 96 (035509) (2006).
[62] V. N. Koparde and P. T. Cummings, "Molecular Dynamics Simulation of Titanium Dioxide Nanoparticle Sintering," J. Phys. Chem. B. 109, 24280-24287 (2005).
[63] A. MacKerell, J. D. Bashford, M. Bellott, R. Dunbrack, J. J. Evanseck, M. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. S. Smith, R., J. Straub, M. Watanabe, J. Wiorkiew-Kuczera, D. Yin and M. Karplus, "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins " J. Phys. Chem. B. 102, 3586 (1998).
[64] O. J. Teleman, B. and S. Engstrom, "A molecular dynamics simulation of a water model with intramolecular degrees of freedom," Mol. Phys. 60, 193 (1987).
[65] A. R. Leach, "Molecular Modelling: principles and applications," Longman (1996).
[66] J. M. Haile., "Molecular Dynamics Simulation," Wiley-Interscience: New York (1992).
[67] D. C. Rapaport, "The Art of Molecular Dynamics Simulation," Cambridge University Press: London (1997).
[68] J. M. Goodfellow, "Molecular Dynamics," CRC Press: Boston (1990).
[69] M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," Oxford Science: London (1991).
[70] D. Frenkel and B. Smit, "Understanding Molecular Simulation," Academic Press: San Diego (1996).
[71] D. W. Heermann, "Computer Simulation Method," Springer-Verlag: Berlin (1990).
[72] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," J. Chem. Phys. 81, 511 (1984).
[73] W. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Phys. Rev. A: At. Mol. Opt. Phys. 31, 1695 (1985).
[74] P. A. T. Olsson, S. Melin and C. Persson, "Atomistic simulations of tensile and bending properties of single-crystal bcc iron nanobeams," Phys. Rev. B. 76, 224112 (2007).
[75] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, "Structural Relaxation Made Simple," Phys. Rev. Lett. 97 (17), 170201 (2006).
[76] H. P and K. W "Inhomogeneous Electron Gas," Phys. Rev. B. 136, 964 (164).
[77] K. W and J. L, Sham., "Self-Consistent Equations Including Exchange and Correlation Effects," Phys. Rev. A. 140, 1133 (1965).
[78] M. D, Ceperly. and J. B, Alder., "Ground State of the Electron Gas by a Stochastic Method," Phys. Rev. Lett. 45, 566 (1980).
[79] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. Kudin, J. C. N.; Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, "Gaussian 03,revision C.02," Gaussian, Inc Wallingford, CT, (2004.).
[80] F. Ken'ichi, "Role of Frontier Orbitals in Chemical Reactions," Science. 218, 747-754 (1982).
[81] P. Mutombo, A. M. Kiss, A. Berk′o and V. Ch′ab1, "Atomic geometry and STM simulations of a TiO2(1 1 0) surface upon formation of an oxygen vacancy and a hydroxyl group," Modelling Simul. Mater. Sci. Eng. 16, 025007 (2008).
[82] Y. Uemura, T. Taniike, M. Tada, Y. Morikawa and Y. Iwasawa, "Switchover of Reaction Mechanism for the Catalytic Decomposition of HCOOH on a TiO2(110) Surface," J. Phys. Chem. C. 111 (44), 16379 -16386 (2007).
[83] X. L. Yin, M. Calatayud, H. Qiu, Y. Wang, A. Birkner, C. Minot and C. Woll, "Diffusion versus Desorption: Complex Behavior of H Atoms on an Oxide Surface," CHemPhysChem. 9, 253-256 (2008).
[84] K. Onda, B. Li, J. Zhao, K. D. Jordan, J. Yang and H. Petek, "Wet Electrons at the H2O/TiO2(110) Surface," Science 308, 1154 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code