Responsive image
博碩士論文 etd-0824110-103536 詳細資訊
Title page for etd-0824110-103536
論文名稱
Title
高雄沿海地區臭氧及其前趨物垂直剖面分佈特性及相關性分析探討
Vertical Profile and Correlation Analysis of Ozone and Its Precursors in Coastal Region of Kaohsiung
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
265
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-09
繳交日期
Date of Submission
2010-08-24
關鍵字
Keywords
層化現象、臭氧生成潛勢、垂直剖面採樣、臭氧及其前趨物、滴定效應
stratification phenomenon, titration effect, vertical profile, ozone and its precursors, ozone formation potential
統計
Statistics
本論文已被瀏覽 5721 次,被下載 12
The thesis/dissertation has been browsed 5721 times, has been downloaded 12 times.
中文摘要
高雄縣市所處高屏空品區為台灣地區空氣污染最為嚴重的區域,空氣品質不良率(PSI>100)可達6-10 %左右,臭氧(O3)是造成高屏空品區空氣品質不良的主要原因之一。有鑑於此,本研究乃採用高空繫留氣球(tethered balloon)搭配採樣泵及鐵氟龍採樣袋,進行O3及其前趨物(NOX及VOCs)的垂直剖面採樣,探討O3及其前趨物濃度的垂直剖面變化及海陸域時空分佈趨勢。本研究於空氣污染最為嚴重的高雄地區,同步進行陸域及海域空氣品質採樣,俾能進一步瞭解陸域及海域O3生成機制及推估污染氣團傳輸路徑。
本研究分別於2006年8月、11月,2007年1月、3月、5月,2008年10月及2009年3月及7月共執行八次O3及其前趨物垂直高空採樣,並依採樣期間的氣象特徵條件,將八次採樣分成海陸風效應期間、東北季風期間及混合型風場期間。其中海陸風效應期間白天與夜晚的風向變化超過90˚,海域及陸域的風速有明顯的改變,海域的風速會有顯著上升與下降之情形,而陸域風速變動較海域為小;東北季風期間風向穩定吹北風(300~60˚)且風速介於1~4 m/s;而混合型風場期間風向較不固定(270~90˚)且風速介於1~3 m/s。
由垂直剖面採樣結果顯示,八次採樣期間64點次中計有40點次發生O3層化現象,其中O3前趨物(NOX或VOCs)濃度亦發生層化現象者共計30點次,佔O3層化現象之75 %,表示O3濃度與其前趨物(NOX及VOCs)濃度存在密切關係。從滴定效應的線性斜率得知,東北季風期間夜間至清晨滴定效應強度較大,且相關性較為顯著(R>0.7),混合型風場期間次之,海陸風效應期間最小,且線性相關不顯著,判斷其可能原因應與氣象條件、O3前趨物濃度及太陽輻射強度不同有關,導致夜間東北季風期間O3濃度較海陸風期間為低。
由VOCs採樣分析結果得知,高雄沿海地區海陸風效應期間、東北季風期間及混合型風場期間的主要揮發性有機物比例,海域平均濃度以丙酮為最高(佔總TVOCs-C2之16.25 %~64.05 %),而陸域平均濃度以甲苯為最高(佔總TVOCs-C2之6.41 %~43.77 %),從總TVOCs-C2濃度來看,海域受到船舶之尾氣排放及有機溶劑使用之影響,使得丙酮濃度仍佔一定的量;另從逆軌跡分析結果得知陸域地區排放源亦會傳輸至外海,造成外海NOX及VOCs濃度升高。由O3生成潛勢結果得知,高雄沿海地區地面至高空500 m處影響O3生成潛勢主要之TVOCs-C2來源為芳香烴類及烯類。
由O3前趨物濃度控制探討結果得知,海域[TVOCs-C2]/[NOX]比值較大,多偏向NOX-limited,因此若需降低O3之生成,必須針對以NOX控制減量為主;陸域[TVOCs-C2]/[NOX]比值較小,甚至有些比值低於4,顯示比較偏向VOCs-limited,若需降低O3之生成,必須以VOCs控制減量為主。
Abstract
Metro Kaohsiung with high percentage (6-10 %) of poor air quality (PSI>100) has been announced officially by Taiwan Environmental Protection Administration (TEPA) as the worst air quality region among seven Air Quality Zones (AQZ) in Taiwan. Ozone is one of two major air pollutants that are responsible for the poor air quality. In this study, the vertical concentration profiles of ozone and its precursors (NOX and VOCs) at eight sites were measured by tethered balloons with air pumps and tedlar sampling bags. This method was used to investigate the vertical profile and the tempospatial distribution of ozone and its precursors in offshore/inland regions. This study further investigated ozone formation mechanism and air mass trajectory via simultaneous air quality sampling around the coastal region of metro Kaohsiung.
This study sampled the vertical concentration profiles of ozone and its precursors at both inland and offshore sites during eight intensive sampling periods on August 16-17 and November 2-3, 2006, January 24-25, March 6-7 and May 2-3, 2007, October 30-31, 2008, and March 11-12 and July 15-16, 2009. Eight sampling periods were divided into the sea-land breeze period, the northeast monsoon period, and the mixing wind field period. During the sea-land breeze period, the wind direction changed 90˚ and more between daytime and nighttime, and the wind speeds of the sea breezes varied significantly than those of the land breezes. During the northeast monsoon period, prevailing wind blew from the north (300~60˚) with the average wind speeds of 1~4 m/s. During the mixing wind field period, the wind direction varied significantly from 270˚ to 90˚ with the average wind speeds of 1~3 m/s.
Results obtained from the vertical profiles showed that O3 concentration appeared stratification phenomenon at 40 out of 64 sampling sites, in which its precursors (NOX or VOCs) demonstrated stratification phenomenon at 30 sampling sites, accounting for 75 % of total O3 stratification. It suggested that ozone and its precursors had strong correlation with each other. The linear slope of the titration effect showed that the intensity of titration effect at night during the northeast monsoon period was larger and had higher correlation (R> 0.7), and followed by the mixing wind field period and the sea-land breeze period. This phenomenon correlated closely with meteorological conditions, the concentrations of O3 precursors, and solar radiation intensity. Therefore, O3 concentration at night during the northeast monsoon period was lower than those of the sea-land breeze period.
Results obtained from VOCs measurement indicated that the major species of VOCs was acetone which accounted for 16.25~64.05 % of total TVOCs-C2 in the offshore region. High concentration of TVOCs-C2 was affected by the usage of organic solvents. While, the major species of VOCs in the inland region was toluene which accounted for 6.41~43.77 % of total TVOCs-C2. Furthermore, results obtained from backward trajectory showed that air pollutants emited from land sources could transport to the offshore region, resulting in high concentration of oversea NOX and VOCs. Major species of VOCs for high O3 formation potential were aromatics and vinyls at the height of 0~500 m around the coastal region of metro Kaohsiung.
The control of O3 precursors concentration showed that the ratio of [TVOCs-C2]/[NOX] in the offshore region was higher, indicating that O3 formation was NOX-limited. Therefore, NOX must be controlled for reducing O3 formation. However, the ratio of [TVOCs-C2]/[NOX] in the inland region was lower, some cases even below 4, showing that O3 formation was VOCs-limited. Thus, VOCs must be controlled for reducing O3 formation.
目次 Table of Contents
謝誌..……..……..……..……..……..……..……..……..……..…………. I
中文摘要..……..……..……..……..……..……..……..……..……..……. II
英文摘要..……..……..……..……..……..……..……..……..……..……. IV
目錄..……..……..……..……..……..……..……..……..……..……..…... VI
表目錄..……..……..……..……..……..……..……..……..……..………. IX
圖目錄..……..……..……..……..……..……..……..……..……..………. XII
第一章 前言..……..……..……..……..……..……..……..……..……... 1-1
1-1 研究動機..……..……..……..……..……..……..……..……….. 1-1
1-2 研究目的..……..……..……..……..……..……..……..……….. 1-3
1-3 研究範圍及架構..……..……..……..……..……..……..……… 1-4
第二章 文獻回顧..……..……..……..……..……..……..……..………. 2-1
2-1 光化學反應..……..……..……..……..……..……..……..…….. 2-1
2-1-1 臭氧形成理論..……..……..……..……..……..………… 2-1
2-1-2 氮氧化物(NOX)與揮發性有機物(VOCs)之光化學反應. 2-3
2-1-3 臭氧滴定效應..……..……..……..…………..……..…… 2-7
2-2 臭氧生成之分析..……..……..……..……..……..……..……….. 2-9
2-2-1 臭氧前趨物對臭氧之生成控制..……..……..……..…… 2-9
2-2-2 臭氧生成潛勢(Ozone Formation Potential, OFP) ..…….. 2-12
2-3 揮發性有機化合物之特性..……..……..……..……..……..….. 2-14
2-3-1 固定源VOCs排放特性..……..……..……..…………… 2-18
2-3-2 移動源VOCs排放特性..……..……..…………..……… 2-20
2-4 高屏地區近年濃度變化趨勢..……..….....……..……..………. 2-21
2-4-1 高屏地區PSI之變化趨勢..……..…...……..……..…….. 2-21
2-4-2 高屏地區臭氧濃度分佈情形..……..……..…………….. 2-23
2-5 高空臭氧分佈特性..……..……..……..……..……..……..…… 2-25
2-6 氣象條件對空氣污染物之影響..……..…….....…..……..……. 2-28
2-6-1 混合層高度..……..……..……..……..……..…………… 2-28
2-6-2 海陸風環流..……..……..……..……..……..……..…..… 2-29
第三章 研究方法..……..……..……..……..……..……..……..………. 3-1
3-1 高屏地區空氣品質監測資料分析..……..…....……..……..….. 3-1
3-2 陸域及海域臭氧及氮氧化物採樣規劃..…………..……..…… 3-1
3-2-1 第一階段採樣規劃……………………………..……….. 3-2
3-2-2 第二階段採樣規劃……………………..……………….. 3-3
3-3 臭氧及氮氧化物監測原理、方法與分析設備...……………… 3-6
3-3-1 臭氧監測原理、方法與分析設備……...…...………….. 3-6
3-3-2 氮氧化物監測原理、方法與分析設備…...…………….. 3-6
3-4 揮發性有機物分析原理、方法與分析設備…..……………… 3-8
3-5 垂直剖面採樣原理、方法與設備……………..……………… 3-14
3-6 品保與品管(QA/QC).………………………….……………… 3-18
3-6-1 臭氧及氮氧化物分析儀器校正及檢查………………… 3-18
3-6-2 船舶監測模擬測試………………………..…………….. 3-20
3-6-3 定時採樣泵空白測試…………………..……………….. 3-22
3-6-4 鐵氟龍採樣袋空白測試…………………..…………….. 3-22
3-7 污染物擴散解析及相關性分析……..………………………… 3-23
3-7-1 等濃度分佈(Concentration Contour) …..……………….. 3-23
3-7-2 逆軌跡分析(Backward Trajectory) ….……….…………. 3-23
3-7-3 相關性分析(Correlation Analysis) ………..……………. 3-24
3-7-4 最大增量分析(MIR) ………..…………………………... 3-25
3-7-5 臭氧生成潛勢分析(OFP) ……..………………………... 3-27
第四章 結果與討論……..……………………………………………… 4-1
4-1 採樣期間高屏地區風場變化分析…………………………….. 4-1
4-2 臭氧、氮氧化物及揮發性有機物濃度採樣與結果探討…….. 4-10
4-2-1 垂直剖面臭氧濃度採樣與分析結果探討……………… 4-11
4-2-2 垂直剖面氮氧化物濃度採樣與分析結果探討………… 4-30
4-2-3 揮發性有機物垂直剖面……………………………….... 4-53
4-2-4 海陸域臭氧濃度採樣與分析結果探討…………..…….. 4-61
4-2-5 海陸域氮氧化物濃度採樣與分析結果探討…………… 4-64
4-2-6 海陸域揮發性有機物採樣結果探討…………..……….. 4-66
4-3 垂直剖面臭氧與氮氧化物滴定效應相關性探討…………….. 4-68
4-3-1 地面O3與NOX滴定效應相關性分析……………..…... 4-68
4-3-2 高空O3與NOX滴定效應相關性分析….……………… 4-73
4-4 揮發性有機物臭氧生成潛勢分析…………………………….. 4-100
4-4-1 不同期間各主要揮發性有機物之結果分析………….... 4-101
4-4-2 BTEX濃度分析…………………………………………. 4-104
4-4-3 間、對二甲苯/乙苯(m,p-Xylene/Ethylbenzene)比值…... 4-106
4-4-4 污染氣團傳輸路徑..…………………………………….. 4-108
4-4-5 臭氧生成潛勢分析(OFP)..……………………..……….. 4-111
4-5 不同高層臭氧前趨物濃度控制之探討……..………………… 4-117
4-5-1 陸域不同高層臭氧前趨物濃度控制..…………..……… 4-117
4-5-2 海域不同高層臭氧前趨物濃度控制..……………..…… 4-120
第五章 結論與建議……………………………………………………. 5-1
5-1 結論..…..……………………………………………………….. 5-1
5-2 建議…………………………………………………………….. 5-3
參考文獻..……………………………………………………………….. R-1
附錄A VOCs原始數據……………………………………………….. A-1
附錄B 不同風場期間TVOCs-C2平均濃度…………………………. B-1
附錄C 不同風場期間TVOCs-C2臭氧生成潛勢量…………………. C-1
參考文獻 References
Atkinson, R., “Gas-phase tropospheric chemistry of organic compounds a review,” Atmospheric Environment, 24A, 1-41, 1990.
Ball, D.J. and Bernard, R.E., “An analysis of photochemical pollution incidents in the greater London area with particular reference to the summer of 1976,” Atmospheric Environment, 12, 1391-1401, 1978.
Blanchard, C.L. and Fairley, D., “Spatial mapping of VOC and NOx-limitation of ozone formation in central California,” Atmospheric Environment, 35, 3861-3873, 2001.
Brönnimann, S., Schuepbach, E., Zanis, P., Buchmann, B., and Wanner, H., “A climatology of regional background ozone at different elevations in Switzerland (1992–1998),” Atmospheric Environment, 34, 5191-5198, 2000.
Carpenter, L.J., Clemitshaw, K.C., Burgess, R.A, Penkett, S.A., Cape, J.N., and Mcfadyen, G.G., “Investigation and evaluation of the NOX/O3 photochemical steady state,” Atmospheric Environment, 32, 3353-3365, 1998.
Carter, W.P., “Development of ozone reactivity scales for volatile organic compounds,” Journal of the Air and Waste Management Association, 44, 881-899, 1994.
Cetin, E., Odabasi, M., and Seyfioglu, R., “Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery,” The Science of the Total Environment, 312, 103-112, 2003.
Chen, C.L., Tsuang, B.J., Tu, C.Y., Cheng, W.L., and Lin, M.D., “Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan,” Atmospheric Environment, 36, 2049-2059, 2002.
Chiu, K.H., Sree, U., Tseng, S.H., Wu, C.H., and Lo, J.G., “Differential optical absorption spectrometer measurement of NO2, SO2, O3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan,” Atmospheric Environment, 39, 941-955, 2005.
Chou, C.C.-K., Liu, S.C., Lin, C.Y., Shiu, C.J., and Chang, K.H., “The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies,” Atmospheric Environment, 40, 3898-3908, 2006.
Clapp, L.J. and Jenkin, M.E., “Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOX in the UK,” Atmospheric Environment, 35, 6391-6405, 2001.
Clarke, A.G. and Ko, Y.-H., “The relative significance of vehicular emissions and other emissions of volatile organic compounds in the urban area of Leeds, UK,” The Science of the Total Environment, 189/190, 401-407, 1996.
Comrie, A.C. and Yarnal, B., “Relationships between synoptic-scale atmospheric in metropolitan Pittsburgh, Pennsylvania,” Atmospheric Environment, 26B, 301-312, 1992.
Dentener, F.J., “Heterogeneous chemistry in the troposphere,” Ph.D. Thesis, University of Utrecht, 1993.
Dimitrades, B., “Scientific basis for the VOC reactivity issues raised by Section 183(e) of the Clean Air Act Amendments of 1990,” Journal of the Air & Waste Management Association, 46, 963-970, 1996.
Doskey, P.V., Fukui Y., and Sultan, M., “Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt,” Journal of the Air & Waste Management Association, 49, 814-822, 1999.
Duan, J., Tan, J., Yang, L., Wu, S., and Hao, J., “Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing,” Atmospheric Research, 88, 25-35, 2008.
Evtyugina, M.G., Nunes, T., Pio, C., and Costa, C.S., “Photochemical pollution under sea breeze conditions, during summer, at the Portuguese West Coast,” Atmospheric Environment, 40, 6277-6293, 2006.
Evtyugina, M.G., Pio, C., Nunes, T., and Costa, C.S., “Photochemical ozone formation at Portugal West Coast under sea breeze conditions as assessed by master chemical mechanism model,” Atmospheric Environment, 41, 2171-2182, 2007.
Fenter, F.F., Caloz, F., and Rossi, M.J., “Experimental evidence for the efficient “dry deposition” of nitric acid on calcite,” Atmospheric Environment, 29, 3365-3372, 1995.
Gasparetto, A. and Zanotto, V., “A technique for time-jerk optimal planning of robot trajectories,” Robitics and Computer-Integrated Manufacturing, 24, 415-426, 2008.
Gee, I.L. and Sollars, C.J., “Ambient air levels of volatile organic compounds in Latin American and Asian cities,” Chemosphere, 36, 2497-2506, 1998.
Grant, R.H. and Wong, K.L., “Ozone profiles over a suburban neighborhood,” Atmospheric Environment, 33, 51-63, 1999.
Greenberg, J.P., Guenther, A., Zimmerman, P., Baugh, W., Geron, C., Davis, K., Helmig, D., and Klinger, L.F., “Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer,” Atmospheric Environment, 33, 855-867, 1999.
Guarnieri, F.L., Echer, E., Pinherio, D.K., and Schuch N.J., “Vertical ozone and temperature distributions above Santa Maria, Brazil (1996–1998),” Advances In Space Research, 34, 759-763, 2004.
Helmis, C.G., Papadopoulos, K.H., Kalogiros, J.A., Soilemes, A.T., and Asimakopoulos, D.N., “Influence of background flow on evolution of saronic gulf sea breeze,” Atmospheric Environment, 29, 3689-3701, 1995.
Hsieh, C.C. and Chang, K.H., and Kao, Y.S., “Estimating the ozone formation potential of volatile aromatic compounds in vehicle tunnels,” Chemosphere, 39, 1433-1444, 1999.
Hsieh, C.C. and Tsai, J.H., “VOC concentration characteristics in Southern Taiwan,” Chemosphere, 50, 545-556, 2003.
Jenkin, M.E. and Clemitshaw, K.C., “Ozone and other secondary photochemical pollutants chemical processes governing their formation in the planetary boundary layer,” Atmospheric Environment, 34, 2499-2527, 2000.
Jiang, W., Singleton, D.L., Hedley, M., and Mclaren, R., “Sensitivity of ozone concentrations to VOC and NOX emissions in the Canadian Lower Fraser Valley,” Atmospheric Environment, 31, 627-638, 1997.
Kaimal, J.C. and Finnigan, J.J., “Atmospheric boundary layer flows: their structure and measurement,” Oxford University Press, New York, 1994.
Kitada, T. and Kitagawa, E. “Numerical analysis of the role of sea breeze fronts on air quality in coastal and inland polluted areas,” Atmospheric Environment, 24, 1545-1559, 1990.
Kun, W., Liu, D.U., and Maofa, G.E., “Environmental chamber study of the photochemical reaction of ethyl methyl sulfide and NOX,” Journal of Environmental Sciences, 21, 137-141, 2009.
Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C., and Wang, X., “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere, 48, 375-382, 2002.
Lin, C.H., “Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan,” Journal of the Air & Waste Management Association, 58, 562-579, 2008.
Lin, C.H., Wu, Y.L., Lai, C.H., Lin, P.H., Lai, H.C., and Lin, P.L., “Experimental investigation of ozone accumulation overnight during a wintertime ozone episode in south TaiwanExperimental investigation of ozone accumulation overnight during a wintertime ozone episode in south Taiwan,” Atmospheric Environment, 38, 4267-4278, 2004.
Lin, C.Y., Wang, Z., Chou, C.C.-K., and Liu, S.C., “A numerical study of an autumn high ozone episode over southwestern Taiwan,” Atmospheric Environment, 41, 3684-3701, 2007.
Lin, T.Y., Sree, U., Tseng, S.H., Chiu, K.H., Wu, C.H., and Lo, J.G., “Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan,” Atmospheric Environment, 38, 4111-4122, 2004.
Malherbe, L. and Mandin, C., “VOC emissions during outdoor ship painting and health-risk assessment,” Atmospheric Environment, 41, 6322-6330, 2007.
Milla′n, M.M., Sanz, M.J., Salvador, R., and Mantilla, E., “Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean,” Environmental Pollution, 118, 167-186, 2002.
Monod, A., Sive, B.C., Avino, P., Chen, T., Blake, D.R., and Rowland, F.S., “Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene,” Atmospheric Environment, 35, 135-149, 2001.
Morikawa, T., Wakamatsu, S., Tanaka, M., Uno, I., Kamiura, T., and Maeda, T., “C2-C5 Hydrocarbon concentrations in central osaka,” Atmospheric Environment, 32, 2007-2016, 1998.
Na, K., Moon, K.C., and Kim, Y.P., “Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul,” Atmospheric Environment, 39, 5517-5524, 2005.
Nelson, P.F. and Quigley, S.M., “The m,p-xylenes ethylbenzene ratio a technique for estimating hydrocarbon age in ambient atmospheres,” Atmospheric Environment, 17, 659-662, 1983.
Neu, U., Kunzle, T., and Wanner, H., “On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration–A case study,” Boundary-layer Meteorology, 69, 221-247, 1994.
NRC, report of the US national research council. “Rethinking the ozone problem in urban and regional air pollution,” National Academy Press, Washington, D.C., 1991.
Olson, D.A., Hammond, D.M., Seila, R.L., Burke, J.M., and Norris, G.A., “Spatial gradients and source apportionment of volatile organic compounds near roadways,” Atmospheric Environment, 43, 5647-5653, 2009.
Ozoe, H., Shibata T., and Sayama, H., “Characteristics of air pollution in the presence of land and sea breeze a numerical simulation,” Atmospheric Environment, 17, 35-42, 1983.
Pisano, J.T., Mckendry, I., Steyn D.G., and Hastie, D.R., “Vertical nitrogen dioxide and ozone concentrations measured from a tethered balloon in the lower fraser valley,” Atmospheric Environment, 31, 2071-2078, 1997.
Rabl, A. and Eyre, N., “An estimate of regional and global O3 damage from precursor NOX and VOCs emissions,” Environment International, 24, 835-850, 1998.
Russell, A., Milford, J., Bergin, M.S., McBride, S., McNair, L., Yang, Y., Stockwell, and W.R., Croes, B., “Urban ozone control and atmospheric reactivity of organic gases,” Science, 269, 491-495, 1995.
Ryerson, T.B., Trainer, M., Holloway, J.S., Parrish, D.D., Huey, L.G., Sueper, D.T., Frost, G.J., Donnelly, S.G., Schauffler, S., Atlas, E.L., Kuster, W.C., Goldan, P.D., H bler, G., Meagher, J.F., and Fehsenfeld, F.C., “Observations of ozone formation in power plant plumes and implications for ozone control strategies,” Science, 292, 719-723, 2001.
Sadanaga, Y., Matsumoto, J., and Kajii, Y., “Photochemical reaction in the urban air: Recent understandings of radical chemistry,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 85-104, 2003.
Saito, S., Nagao, I., and Tanaka, H., “Relationship of NOX and NMHC to photochemical O3 production in a coastal and metropolitan areas of Japan,” Atmospheric Environment, 36, 1277-1286, 2002.
Sanchez, M.L., Torre, B.D., Garcı′a, M.A., and Pe′rez, I., “Ground-level ozone and ozone vertical profile measurements close to the foothills of the Guadarrama mountain range (Spain),” Atmospheric Environment, 41, 1302-1314, 2007.
Seibert, P., Beyrich, F., Gryning, S.E., Joffre, S., Rasmussen, A., and Tercier, P. “Review and intercomparison of operational methods for the determination of the mixing height,” Atmospheric Environment, 34, 1001-1027, (2000).
Seinfeld, J.H., “Atmospheric chemistry and physics of air pollution,” Wiley Interscience, New York, 1986.
Shair, F.H., Sasaki, E.J., Carlan, D.E., Cass, G.R., and Goodin, W.R., “Transport and dispersion of airborne pollutants associated with the land breeze-sea breeze system,” Atmospheric Environment, 16, 2043-2053, 1982.
Statheropoulos, M., Agapiou, A., and Pallis, G., “A study of volatile organic compounds evolved in urban waste disposal bins,” Atmospheric Environment, 39, 4639-4645, 2005.
Stockwell, W.R., Geiger, H., and Becker, K.H., “Estimation of incremental reactivities for multiple day scenarios: an application to ethane and dimethyoxymethane,” Atmospheric Environment, 35, 929-939, 2001.
Tan, P.H., Chou, C., Liang, J.Y., Chou, C.C.-K., and Shiu C.J., “Air pollution “holiday effect” resulting from the Chinese New Year,” Atmospheric Environment, 43, 2114-2124, 2009.
Tonse, S.R., Brown, N.J., Harley, R.A., and Jin, L., “A process-analysis based study of the ozone weekend effect,” Atmospheric Environment, 42, 7728-7736, 2008.
Tsai, H.H., Yuan, C.S., Huang, C.H., and Lin, Y.C., “Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone,” Aerosol and Air Quality Research, 10, 331-344, 2010.
Tseng, K.H., Chen, C.L., Lin, M.D., Chang, K.H., and Tsuang, B,J., “Vertical profile of ozone and accompanying air pollutant concentrations observed at a downwind foothill site of industrial and urban areas,” Aerosol and Air Quality Research, 9, 421-434, 2009.
U.S. Environmental Protection Agency, “Control techniques for volatile organic emissions from stationary sources,” U.S. Department of Commerce National Technical Information Service, 1978.
Wadden, R.A., Uno, I., and Wakamastu, S., “Source discrimention of short-term hydrocarbon samples measured aloft,” Environmental Science & Technology, 20, 473-483, 1986.
Wang, J.L., Wang, C.H., Lai, C.H., Chang, C.C., Liu, Y., Zhang, Y., Liu, S., and Shao., M., “Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons,” Atmospheric Environment, 42, 6233-6246, 2008.
Zhang, J. and Rao, S.T., “The role of vertical mixing in the temporal evolution of ground-level zone concentrations,” Journal of Applied Meteorology, 38, 1674-1691, 1999.
王根樹,黃明豐,端木玉甯,邱兆安,“汽油及液化石油氣(LPG)引擎排放污染物比較分析之研究期末報告”,中國液化石油氣加氣站協會,2006。
江世民、賈愛玫,“高屏空品區臭氧尖峰濃度之時空關聯性分析-以潮州測站為例”,第十八屆空氣污染控制技術研討會,2001。
吳義林,陳鎧銘,“嘉義地區揮發性有機物來源及其臭氧生成潛勢”,第二十六屆空氣污染控制技術研討會,2009。
周明顯、樓基中、袁中新,“高雄市臭氧生成前趨物控制及減量策略研擬”,高雄市政府環境保護局,2001。
林志仁,吳明泰,蔡俊鴻,張能復,“高屏地區大氣揮發性有機物成份特徵與臭氧生成潛勢關聯性研究”, 第十五屆空氣污染控制技術研討會,1998。
林泱瑜,陳淨修,蔡俊鴻,“高屏空品區臭氧事件日特徵與揮發性有機物光化反應潛勢相關性分析”,第二十六屆空氣污染控制技術研討會,2009。
林沛練,賴信志,葉嘉靜,“南高屏地區空氣污染案例之氣象觀測與模擬探討”,2004年地球科學聯合學術研討會,2004。
林清和,賴進興,吳義林,石正宏,“高屏地區臭氧儲留層之特性與其對於地面臭氧濃度之貢獻研究”,第二十二屆空氣污染控制技術研討會,2005。
施國亮、吳鴻文、陳榮洪,“柴油混摻高黏度燃油之漁船用油研究”, 行政院國家科學委員會專題研究計畫,NSC 96-EPA-Z-224-002,2007。
柳中明、蘇維中,“區域氣象環境與高臭氧之相關分析”,氣象科學,Vol.25,No.1,1997。
袁中新、林勳佑、蔡協宏、洪崇軒、李家偉、黃玉立、黃堃修,“高屏空品區大氣懸浮微粒污染熱區解析”,第二十二屆空氣污染控制技術研討會,2005。
張艮輝、陳建鴻,“台灣地區臭氧污染控制物種之分析”,宜蘭縣政府環境保護局92年度研究及計畫執行成果,2003。
張甫升、黃重光、謝志男、林穎標、簡美蓉、辜伯都、鄒群力,“台中港區揮發性有機物排放之探討分析”,台中港務局,2007。
張能復,曹志宏,“以光化學反應性軌跡模式檢討MIR指標應用於台灣臭氧前驅物排放減量的效果”,第十五屆空氣污染控制技術研討會,1998。
張順欽,“台北市空氣品質近十年來變動型態及其顯現的意義”,國立中央大學環境工程研究所博士論文,2006。
陳怡君,陳佳昌,王雅馨,張立鵬,方煥銘,黃招斌,劉俊一,李穆生,“世運期間高高屏空氣品質改善措施”,第二十六屆空氣污染控制技術研討會,2009。
黃怡嘉,“中部空品區天氣型對臭氧濃度相關之解析”,東海大學環境科學系碩士論文,2000。
楊育興,“臭氧污染事件日期間林園地區大氣垂直剖面臭氧濃度日變化特性之研究”,輔英科技大學環境工程與科學系碩士班碩士論文,2008。
經濟部能源局,“中華民國97年能源統計手冊”,2009。
葉宣貝,張嘉峰,陳中邦,曾振南,米孝萱,楊錫賢,“改裝車使用兩種不同LPG 燃料對法定空氣污染物與VOCs排放影響研究”, 第二十五屆空氣污染控制技術研討會,2008。
蔡協宏,“低層大氣中臭氧與碳氫化合物之關連性解析”,逢甲大學環境工程與科學學系碩士論文,2005。
蔡協宏,袁中新,蘇明民,底宗鴻,洪崇軒,林啟燦,“高屏地區鄰近海域空氣污染物時空分佈探討”,第二十三屆空氣污染控制技術研討會,2006。
蔡協宏、底宗鴻、蕭文瑞、蘇明民、袁中新,“東北季風及海陸風對高污染地區空氣品質之影響”,粵港澳城市群氣候與環境研討會,2008。
蔡詠安,“氣象條件與臭氧事件日相關性之探討:以高高屏地區為例”,國立中山大學環境工程研究所碩士論文,2002。
歐雅雯,“以VOC測站網探討中臺灣臭氧成因”,國立中山大學環境工程研究所碩士論文,2005。
盧炳利、程萬里,“台灣中部地區海風與臭氧濃度相關性,第十九屆空氣污染控制技術研討會”,2002。
薛朝安,“台灣中部地區高臭氧事件之探討”,東海大學環境科學系碩士論文,2007。
蘇聖群,“NOX與NMHC濃度對臭氧產生濃度之影響與探討”,國立中興大學環境工程學系碩士論文,2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.198.173
論文開放下載的時間是 校外不公開

Your IP address is 3.140.198.173
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code