Responsive image
博碩士論文 etd-0824111-010812 詳細資訊
Title page for etd-0824111-010812
論文名稱
Title
利用濺鍍二氧化矽與量子井熱混合方式製作半導體雷射
Semiconductor Laser using Sputtered SiO2 and Quantum Well Intermixing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-11
繳交日期
Date of Submission
2011-08-24
關鍵字
Keywords
量子井熱混合擴散、內部晶格擴散、熱擴張係數、應力、能隙
quantum well intermixing(QWI), bandgap, thermal expansion coefficient, stress, impurity free vacancy diffusion(IFVD)
統計
Statistics
本論文已被瀏覽 6128 次,被下載 985
The thesis/dissertation has been browsed 6128 times, has been downloaded 985 times.
中文摘要
在本文中,以量子井熱混合擴散方式(QWI)-內部晶格擴散(IFVD),藉者熱擴張係數來增加表面應力使之調整材料能隙。在本篇文章中,使用主動層波長1530 nm材料為多重量子井InGaAsP 在P-InP(2um 厚度,上層)與n-InP(下層)之間,此多層結構被用來做為測試與雷射製程,而上層材料為接觸層p-InP(InGaAs,InP)做為比較。藉著不同程度大小的熱擴張係數如SiO2與不同接觸(InGaAs ,InP),可以明顯看出QWI在此有很大的不同,而藉著離子
佈植方式去製造空隙在此沒有多大的依據變化。在InP 2um厚度以下的多重量子井材料InGaAsPy在此種方法下經由量測光激發光發知道波長位移超過70nm。並且在雷射結構共平面波導藉由QWI方法成功製作與呈現,波長位移如同光激發光測試。同時也可以知道此種材料可以成功\\\\\\\\用在QWI方法上。使用濺鍍SiO2材料就可以做出不同能隙的區域,要求達到對積體整合下須做重長晶的效果,提供QWI一個強大去調整能隙的方法。

Abstract
In this work , impurity free vacancy diffusion (IFVD) quantum well intermixing(QWI) technology by high thermal-expansion-induced stress is used to perform bandgap engineering. In this paper, 1530nm InGaAsP
multiple QWs sandwiched by p-InP (2μm thickeneess, top) and n-InP (bottom) material is used as testing material structure also laser fabrication material, where contact materials (InGaAs and InP) on p-InP
are used for comparison. By the difference between thermal expansion coefficients of SiO2 on the different material (InGaAs, InP), large different behaviors of QWI are observed, while low different dependence on defects created by ion-implantation is found. Above 70nm photo luminance (PL) wavelength shift of InGaAsP MQW below 2μm thick InP is realized in this method. Further more, CW in-plane laser structures are also successfully fabricated and demonstrated by such QWI, giving the same shift as PL. It shows that good qualify of material can be obtained in such QWI method. Using local deposition of SiO2 causes different bandgap materials, re-growth free processing for monolithic integration can be expected, offering a powerful scheme of QWI for bandgap
engineering.
目次 Table of Contents
中文審定書 i
英文審定書 ii
中文摘要 iii
英文摘要 iv
致謝 v
目錄 vi
圖次 vii
第一章 簡介........................................................................10
1.1 前言………………………………………………........10
1.1.1 內部晶格缺位擴散(IFVD) by 顏宏戎………...........15
1.2 研究動機………………………………........................17
1.3 論文架構........................................................................18
第二章 理論...........................................................................................19
2.1 熱混合擴散原理(Quantum Well Intermixing QWI)......................................................................................20
2.2 內部晶格缺位擴散(Impurity-Free Vacancy Diffusion IFVD)與熱擴張係數
(thermal expansion coefficient )......................................23
2.3 計算熱混合擴散之量子井............................................26
2.4 熱混合擴散效應下能帶結構的改變............................28
2.5 量子井波函數與基態的計算........................................32
第三章 實驗測試與設計.....................................................35
3.1 RIE Ar plasma(RF power).........................................35
3.2 熱擴張係數(thermal expansion coefficient) 和
RIE Ar plasma (ECR power)............................................38
3.3 元件雷射製作................................................................45
3.3.1 熱混合擴散製程........................................................46 3.3.2 底切蝕刻被動波導.....................................................51
3.3.3 蒸鍍N型金屬..............................................................52
3.3.4 BCB製作平坦化.........................................................54
3.3.5 蒸鍍共平面電極.........................................................55
第四章 原件特性量測與討論.............................................56
4.1 吸收(absorption)與穿透(transmission)對能隙的影響..........................................................................................564.2 電激發光(Luminescence) 與電流對電壓與發光曲線(LIV-curve)...........................................................................60
第五章 結論........................................................................62
第六章 參考文獻................................................................63
參考文獻 References
[1] James W. Raring and Larry A. Coldren,” 40-Gb/s Widely Tunable Transceivers”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 1,JANUARY/FEBRUARY 2007
[2] H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu,L. K. Ang, ,and X. H. Tang, “Experimental and Theoretical Analysis of Argon Plasma-Enhanced Quantum-Well Intermixing”, IEEE JOURNAL OF
QUANTUM ELECTRONICS, VOL. 40, NO. 2, FEBRUARY 2004
[3] Sylvain Charbonneau, Emil S. Koteles, P. J. Poole, J. J. He, G. C. Aers,J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell ” Photonic Integrated Circuits Fabricated Using Ion Implantation” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 4, JULY/AUGUST 1998
[4] Hery Susanto Djie, , and Ting Mei, “Plasma-Induced Quantum Well Intermixing for Monolithic Photonic Integration” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 11, NO.
2, MARCH/APRIL 2005
[5] D. Nie, T. Mei,a_ X. H. Tang, and M. K. Chin, H. S. Djie, Y. X. Wang” Argon plasma exposure enhanced intermixing in an undoped InGaAsP/InP quantum-well structure”, JOURNAL OF APPLIED PHYSICS 100, 046103 _2006_
[6] B. S. Ooi, C. J. Hamilton, K. McIlvaney, A. C. Bryce, R. M. De La Rue, J . H. Marsh and J . S. Roberts, “Quantum- Well Intermixing in GaAs-AlGaAs Structures Using Pulsed Laser Irradiation”, IEEE
PHOTONICS TECHNOLOGY LETTERS, VOL. 9, NO. 5, MAY 1997
[7] Andrew McKee, C. J. McLean, Giuseppe Lullo, A. Catrina Bryce,Richard M. De La Rue,John H. Marsh, and Christopher C. Button,”Monolithic Integration in InGaAs-InGaAsP Multiple- Quantum- Well 64
Structures Using Laser Intermixing”, IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 1, JANUARY 1997
[8]H.H. Tan, SrudentbMember, IEEE and C. Jagadish, Senior Member, IEEE, “Quantum Well Intermixing and Wavelength-shifting in GaAs Lasers by Proton Irradiation” , ICSE’96 Proc., Nov. 1996, Penang,
Malaysia
[9] H. S. Djie,a! C. K. F. Ho, and T. Mei, B. S. Ooi,” Quantum well intermixing enhancement using Ge-doped sol-gel derived SiO2 encapsulant layer in InGaAs/InP laser structure”, APPLIED
PHYSICS LETTERS 86, 081106 s2005d
[10] A. Pe´ pin,a) C. Vieu,b) M. Schneider, and H. Launois, Y. Nissim,” Evidence of stress dependence in SiO2/Si3N4 encapsulation-based
layer disordering of GaAs/AlGaAs quantum well heterostructures”, J. Vac. Sci. Technol. B 15(1), Jan/Feb 1997
[11] Hyun-Soo Kim, Jeong Woo Park, Dae Kon, Kwang Ryong, Sung June Kim and In-Hoon Choi,” Quantum well intermixing of In1−xGaxAs/InP and In1−xGaxAs/In1−xGaxAs1−yPy multiple-quantum-well structures by using the impurity-free vacancy
diffusion technique”, Semicond. Sci. Technol. 15 (2000) 1005–1009. Printed in the UK
[12] Masayuki Katayama, Yutaka Tokuda and Yajiro lnoue, Akira Usami and Takao Wada,” Ga out-diffusion in rapid-thermal-processed GaAs with Si02 encapsulants”, J. Appl. Phys. 69 (6), 15 March 1991
[13] A. Hamoudi, A. Ougazzaden, Ph. Krauz, E. V. K. Rao, M. Juhel, and H. Thibierge,” Cation interdiffusion in InGaAsP/InGaAsP multiple quantum wells with constant P/As ratio”, Appl. Phys. Lett. 66 (6), 6
February 1995 65
[14] P L Gareso, M Buda, H H Tan, C Jagadish, S Ilyas and M Gal,” On quantifying the group-V to group-III interdiffusion rates in InxGa1−xAs/InP quantum wells” Semicond. Sci. Technol. 21 (2006) 829–832
[15] Sang Kee Si, Deok Ho Yeo, Kyung Hun Yoon, and Sung June Kim,” Area Selectivity of InGaAsP–InP Multiquantum-Well Intermixing by Impurity-Free Vacancy Diffusion”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4,
NO. 4, JULY/AUGUST 1998
[16] H. Peyre, F. Alsina, J. Camassel, J. Pascual, R. W. Glew” Thermal stability of InGaAsAnGaAsP quantum wells”, J. Appl. Phys. 73 (6),15 April 1993
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code