Responsive image
博碩士論文 etd-0824111-100131 詳細資訊
Title page for etd-0824111-100131
論文名稱
Title
應用類神經網路於導波訊號分析之管線特徵辨識
Feature Recognition in Pipeline Guided Wave Inspection Using Artificial Neural Network
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2011-08-24
關鍵字
Keywords
有限元素法、紅黑比、導波、類神經網路、T(0,1)扭矩模態
finite element method, R/B ratio, artificial neural network, guided wave, T(0,1) mode
統計
Statistics
本論文已被瀏覽 5689 次,被下載 347
The thesis/dissertation has been browsed 5689 times, has been downloaded 347 times.
中文摘要
導波檢測系統對於管線檢測具有長距離檢測的特性且可檢測到無法直接接觸的管線;其中,T(0,1)扭矩模態導波因非頻散特性而被廣泛使用在煉油石化廠裡大量的管線上。為了使檢測者更快速的判讀常見管線特徵之回波訊號,本研究建立一套類神經網路診斷系統,用以分類和辨識管線上常見特徵訊號。實驗中,利用環狀陣列式的壓電探頭,於六吋標準實驗管線上激發出T(0,1)扭矩模態導波,針對法蘭、銲道、彎管和彎管上具有缺陷等特徵進行檢測並擷取這些訊號,擷取出來的訊號再以數值軟體進行處理,以符合類神經網路樣本資料庫所需之大小,並將這些管線特徵訊號分為黑色軸對稱訊號、紅色非軸對稱訊號與兩訊號相除之紅黑比。本文進一步以有限元素法分析出不同結構銲道訊號振幅大小,以及模擬管線上常見特徵,包含法蘭、銲道及彎管,模擬結果符合實驗管線之回波訊號。網路的訓練與驗證資料必須使用實際訊號作為參數,因模擬所得回波訊號過於理想,故使用實驗訊號作為網路的特徵參數。類神經網路的辨識方面,另取得工業中實際管線訊號,用來測試網路訓練結果,測試管件有兩根,其中一根具有柏油包覆層,會使得訊號衰減,另一根管線上包含乾淨彎管和具有缺陷的彎管。本研究利用兩類別辨識方法,在辨識具有包覆的實際測試管線中,於低頻部分可成功的將法蘭與銲道分類出來,而高頻部分因柏油包覆使得訊號衰減,導致法蘭與銲道訊號相近,故會產生誤判。彎管上有缺陷與否的辨識,因彎管上具有缺陷的回波訊號分為3個波峰與2個波峰訊號,研究中以此兩種情況分開訓練網路,3波峰的收斂結果較優於2波峰的訊號;而彎管上具有缺陷時,3波峰的訊號會因樣本限制造成誤判,而2波峰訊號可辨識出來。
Abstract
Guided ultrasonic detection system has the ability to inspect long range and not accessible pipelines. Especially, the T(0,1) mode guided wave was used widely at the detection, because the property of non-dispersive. For rapidly judge common features on pipe, this thesis makes an artificial neural network diagnosis system to separate and recognize the signals on pipeline. In the experimental setup, the torsional mode signal are excited by using an array of transducers distributed around the circumference of the 6-inch standard pipe, and the reflected signals contain flange, weld, elbow, and defect on elbow. These features are extracted and have been further processed to limit the size of the neural network; then, the feature signal classify as axisymmetric called black, non-axisymmetric called red, and dividing between the two called R/B ratio. The research also uses finite element method to simulate the weld by building up different kind of profile to analyze its amplitude and simulate the flange, elbow, and defect on the elbow. Because the reflection waves of simulation are too idealize to be the network data, the training data and validation data are collected from the experimental wave. In the recognition of artificial neural network, the signals were getting from two pipes of industry. One has bitumen on it, which makes signals attenuation. The other has a clear elbow and a notch on elbow. The two-class recognition method successfully separates flange and weld in low frequency; but in high frequency, the weld signal amplitude is close to flange signal, because the signals decay when guided waves pass to bitumen, and this makes the judge become error. Furthermore, the network recognizes defects on elbow, where the signals have 3 peaks and 2 peaks when the elbow has defect on it. The training result shows that the 3 peaks have better convergent than the 2 peaks in the network. Finally, the developed method can recognize those defects on the elbow when the reflection signals have 2 peaks, and when reflection signals have 3 peaks, it could not make a good judge because the network limit by sample data.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻回顧 3
1.3.1導波文獻回顧 3
1.3.2類神經網路文獻回顧 5
1.4 研究方法 7
第二章 基本理論 9
2.1導波於圓管中傳遞之波動方程式 9
2.1.1縱向模態 10
2.1.2扭矩模態 10
2.1.3撓曲模態 11
2.2頻散曲線 12
2.3波形結構 14
2.4類神經網路 15
2.4.1類神經網路系統理論與架構 15
2.4.2類神經網路的學習方式 16
2.4.3類神經網路的特色 18
2.4.3.1快速運算能力 18
2.4.3.2高記憶容量 18
2.4.3.3學習能力 19
2.4.3.4容錯能力 19
2.4.4類神經網路的應用 19
2.4.4.1依問題類型分類 19
2.4.4.2依應用領域分類 20
2.5倒傳遞類神經網路 21
2.5.1 BPNN架構與參數建立 21
2.5.2倒傳遞類神經網路學習演算法 23
2.6有限元素法 26
第三章 實驗架構與模擬分析 38
3.1導波法管線檢測系統 38
3.1.1導波法檢測儀器設備 38
3.1.2測試管線規格 40
3.1.3導波法回波訊號判讀 40
3.2模擬分析 43
3.2.1元素與網格模型 43
3.2.2激發訊號與後處理 44
3.2.3回波訊號擷取 45
3.3模擬與實驗結果討論 47
第四章 應用倒傳遞類神經網路於管線辨識 66
4.1特徵訊號前處理 66
4.2網路訓練結果討論 69
4.3辨識結果討論 70
第五章 結論與建議 88
5.1結論 88
5.2未來展望 90
參考文獻 91
參考文獻 References
1. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
2. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
3. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
4. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
5. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
6. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
7. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
8. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
9. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
10. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustics, Vol. 17, pp. 218-222, 1966.
11. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustics, Vol. 17, pp. 317-329, 1972.
12. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
13. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
14. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
15. G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
16. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves”, Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
17. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
18. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
19. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
20. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
21. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
22. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
23. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
24. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
25. M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
26. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
27. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
28. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the s0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, December, pp. 2589-2601, 2002.
29. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
30. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
31. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
32. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
33. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
34. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
35. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, August, pp. 611-625, 2003.
36. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G.. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
37. H. Kwun and K. A., “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
38. J. W. Cheng, S. K. Yang, and B. H. Li, “Guided Wave Attenuation in Clamp Support Mounted Pipelines,” Materials Evaluation, Vol. 65, No.3, pp.317-322, 2007.
39. S. K. Yang, P. H. Lee and J. W. Cheng, “Effect of Welded Pipe Support Brackets on Torsional Guided Wave Propagation,” Materials Evaluation, Vol. 67, No.8, pp.935-944, 2009.
40. Michael Chester, Neutral Networks: a tutorial, PTR Prentice Hall, 1993.
41. Phil Mars, J. R. Chen, and Raghu Nambiar, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications, CRC Press, 1996.
42. D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949.
43. F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psych. Rev, Vol. 65, no. 6, pp. 386-408, 1958.
44. B. Widrow and M. E. J. Hoff, “Adaptive Switching Circuits,” IRE Western Electric Show and Convention Record, pp. 96-104, 1960.
45. M. L. Minsky and S. A. Papert, “Perceptrons,” Cambridge, MA: MIT Press, 1969.
46. J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proceeding of the National Academy of Scientists of the United States of America-Biological Sciences, Vol. 79, pp.2554-2558, 1982.
47. D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.1 Cambridge, MA: MIT Press, 1986.
48. G. W. Margrave, K. Rigas, D. A. Bradley and P. Barrowcliffe, “The use of Neural Networks in Ultrasonic Flaw Detection,” Measurement, Vol. 25, pp. 143-154, 1999.
49. V. Khandetsky and I. Antonyuk, “Signal Processing in Defect Detection Using Back-propagation Neural Networks,” NDT & E International, Vol. 35, pp. 483-488, 2002.
50. Kyungmi Lee and Vladimir Estivill-Castro, “Feature Extraction and Gating Techniques for Ultrasonic Shaft Signal Classification,” Applied Soft Computing, Vol. 7, pp. 156-165, 2007.
51. Francesca Cau, Alessandra Fanni, Augusto Montisci, Pietro Testoni, Mariangela Usai, “Artificial Neural Networks for Non-Destructive Evaluation with Ultrasonic Waves in Not Accessible Pipes,” IAS 2005, Industry Applications Society, Vol. 4, pp.53-58, 2005.
52. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
53. M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
54. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
55. 葉怡成,類神經網路應用模式與實作,儒林圖書有限公司,1999。
56. 焦李成,類神經網路系統理論,儒林圖書有限公司,1999。
57. 張斐章、張麗秋,類神經網路導論-原理與應用,滄海書局,2010。
58. 李柏儀,類神經網路於海床底質辨識之研究,國立中山大學海下技術研究所碩士論文,中華民國89年6月。
59. 劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
60. Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
61. L. Zhang, W. Luo and J. L. Rose, “Ultrasonic Guided Wave Focusing Beyond Welds in a Pipeline.” Review of Progress in Quantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti, Vol. 25, pp.877-884, 2006.
62. Q. Liu, H. Wirdelius, “A 2D Model of Wave Propagation in an Anisotropic weld.” NDT & E International, Vol. 40, pp.229-238, 2007.
63. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” in D. Thompson and D. Chimenti, eds., Review of Progress in Quantitative NDE, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 11B, pp. 203-210, 2002.
64. ANSYS(R) Product Launcher Release 11.0, Copyright(c) 1994-2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code