Responsive image
博碩士論文 etd-0824111-165554 詳細資訊
Title page for etd-0824111-165554
論文名稱
Title
藉由ALD成長在m面藍寶石基板之m面氧化鋅結構與特性
Structure and Characterization of m-ZnO on m-Sapphire by ALD
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-30
繳交日期
Date of Submission
2011-08-24
關鍵字
Keywords
光致螢光、藍寶石基板、偏振、氧化鋅、m面、原子層沉積系統
ALD, m-plane, sapphire (Al2O3), ZnO, polarization, PL
統計
Statistics
本論文已被瀏覽 5726 次,被下載 1181
The thesis/dissertation has been browsed 5726 times, has been downloaded 1181 times.
中文摘要
我們使用原子層沉積系統在m面藍寶石(sapphire)基板上成長m面(101 ‾0)氧化鋅磊晶薄膜,從穿透式電子顯微鏡(TEM)的原子影像和電子繞射及X-ray繞射都顯示ZnO的m-plane // 基板m-plane, 且ZnO [112 ‾0] // Al2O3 [0001], ZnO [0001] // Al2O3 [112 ‾0]。 Rocking curve的半高寬和擺動的晶體軸有關。從穿透式電子顯微鏡下觀察到介面處分佈著許多的錯位缺陷 (misfit dislocations),只有在入射電子束平行ZnO[112 ‾0] 才會有這些缺陷;在遠離介面的a面氧化鋅薄膜觀察到層錯(stacking faults)現象。在光致螢光量測中我們量測入射光的偏振方向對螢光偏振方向的影響。兩種不同的入射偏振都得到相同的結果:藉由multi-peaks fitting顯示15K時躍遷約在3.32eV,而在室溫(300K)時紅移到3..28eV。這個能量上的變化符合費米能階隨溫度的平方變化的特性,因此我們認為這是能隙訊號。在300K時,沿氧化鋅a-axis方向偏振的螢光在2.48eV處會出現一個明顯,但迄此時仍難以確認的波峰。不過在多峰擬合所得結果裡的其他波峰則都解讀為或是由雜質能階躍遷,或是激子,或是與聲子有相互作用的激子態所造成。
Abstract
Epitaxial m-plane (11 ‾00) ZnO thin films grown on m-sapphire substrates by atomic layer deposition have been studied. Atomic imaging and electron diffraction conducted in a transmission electron microscope (TEM) and crystallography by X-ray diffractometry all show consistent epitaxial relations with ZnO m-plane // sapphire m-plane, while ZnO [112 ‾0] // Al2O3 [0001], and ZnO [0001] // Al2O3 [112 ‾0]. The widths (full width at half maximum, or FWHM) of the rocking curves depend on the crystallographic axis of rotation. Dislocations near the interface between the ZnO epi-layers and sapphire substrates can be found from the cross-sectional TEM images when the direction of the incident electron beam, namely, the zone axis, is parallel to ZnO [112 ‾0], the a-axis of ZnO. There are stacking faults found in ZnO films away from their interfaces with the substrates. Polarization-dependent photoluminescence by differently polarized incident laser beam have also been investigated. Careful analysis of the spectra via multi-peak fittings revealed optical transitions at 3.32eV for T = 15K, which, however, shifted to 3.28eV at T = 300K. This shift in energy is accounted for by the quadratic temperature dependence of the Fermi level as determined by the positions of the lines of emission corresponding to the band edge transition. The 300K spectrum showed a more distinct peak at 2.48eV when the polarization of the emitted light was along the a-axis of ZnO, as compared to that along the c-axis of ZnO. The origin of this difference remains unaccounted for at the time of writing this thesis. The rest of the peaks have been interpreted in terms of optical transitions involving band gap impurity states, possible exciton formations, and their interactions with phonons.
目次 Table of Contents
目錄
Abstract i
目錄 iv
圖目錄 v
第一章 簡介 1
第二章 儀器原理與介紹 5
原子層沉積系統Atomic Layer Deposition(ALD) 5
X光繞射儀 8
電子背向散射繞射(Electron Backscatter Diffraction ,EBSD) 9
穿透式電子顯微鏡(Transmission Electron Macroscope, TEM) 10
光致螢光(Photo Luminescence ,PL) 11
第三章 實驗結果與分析 13
樣品製備 13
XRD結果 15
Rocking結果 16
XRD Φ scan結果 18
EBSD結果 19
TEM結果 21
PL結果 29
第四章 結論 41
參考資料 42
參考文獻 References
[1] T. W. Kim, T.W. Kima, K.D. Kwacka, H.-K. Kimb, Y.S. Yoonb, J.H. Bahangc, H.L. Parkc, “Optical parameters in ZnO nanocrystalline textured films grow on p-InP (100) substrates”, Solid State Commun. 127, 635, (2003)
[2] A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, “Quantum Hall Effect in Polar Oxide Heterostructures”, Science 315, 1388 (2007)
[3] B. Szyszka, V. Sittinger, X. Jiang, R.J. Honga, W. Wernera, A. Pfluga, M. Ruskeb, A. Lopp, “Transparent and conductive ZnO:Al films deposited by large area reactive magnetron sputtering”, Thin Solid Films 442, 179–183 (2003)
[4] Y. W. Heo, M. P. Ivill, K. Ip, D. P. Norton, S. J. Peartona, J. G. Kelly, R. Rairigh, A. F. Hebard, T. Steiner, “Effects of high-dose Mn implantation into ZnO grown on sapphire”, Appl. Phys. Lett. 84, 2292 (2004).
[5] J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B.Y. Wang, T. Wu, L. Wang, H. T. Zhang, X.Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, J. Ding, “Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO”, Phys. Rev. Lett. 104, 137201 (2010).
[6] Momoji Kubo, Yasunori Oumi, Hiromitsu Takaba, Abhijit Chatterjee, and Akira Miyamoto, Masashi Kawasaki, Mamoru Yoshimoto, Hideomi Koinuma, “Homoepitaxial growth mechanism of ZnO(0001) : Molecular-dynamics simulations”, Phys. Rev. B 61, 16187 (2000)
[7] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films”, Appl. Phys. Lett. 78, 1237 (2001)
[8] Won Taeg Lim, Chang Hyo Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates”, Thin Solid Films 353, 12 (1999)
[9] Keiichiro Sakurai, Masahiko Kanehiro, Ken Nakahara, Tetsuhiro Tanabe, Shizuo Fujita, Shigeo Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Cryst. Growth 209, 522 (2000)
[10] J. W. Elam, S. M. George, “Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques”, Chem. Mater. 15, 1020 (2003)
[11] X. W. Sun, H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition”, J. Appl. Phys. 86, 408 (1999)
[12] D.G. Baik, S.M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Film 354, 227 (1999)
[13] Sang-Hun Jeong, Bong-Soo Kim, Byung-Teak Lee, “Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient”, Appl. Phys. Lett. 82, 2625 (2003)
[14] http://www.dawgsdk.org/crystal/en/library/wurtzite#0009
[15] Hadis Morkoc, Umit Ozgur, “Zinc Oxide”, Wiley-VCH, 2009
[16] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect”, Phys. Rev. Lett. 53, 2173 (1984)
[17] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, Sg. Fujita, “ZnO growth using homoepitaxial technique on sapphire and Si substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth 237, 553 (2002)
[18] Mitch M.C. Chou, Liuwen Chang, Da-Ren Hang, Chenlong Chen, Da-Sin Chang, and Chu-An Li, “Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) γ-LiAlO2 Substrate”, Crystal Growth & Design, 9, 2073 (2009)
[19] Jung-Hyun Kim, Seok Kyu Han, Sun Ig Hong, Soon-Ku Hong, Jae Wook Lee, Jeong Yong Lee, Jung-Hoon Song, Jin Sub Park, and Takafumi Yao, “Growth and structural properties of ZnO films on (10−10) m-plane sapphire substrates by plasma-assisted molecular beam epitaxy”, J. Vac. Sci. Technol. B 27, 1625 (2009)
[20] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, “Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN” Appl. Phys. Lett. 71, 1996 (1997).
[21] B. Rau, P. Waltereit, O. Brandt, M. Ramsteiner, K.H. Ploog, J. Puls and F. Henneberger, “In-plane polarization anisotropy of the spontaneous emission of M-plane GaN/(Al,Ga)N quantum wells”, Appl. Phys. Lett. 77, 3343 (2000)
[22] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes”, Appl. Phys. Lett. 86, 111101 (2005)
[23] S. Shokhovets, O. Ambacher, B. K. Meyer, and G. Gobsch. “Anisotropy of the momentum matrix element, dichroism, and conduction-band dispersion relation of wurtzite semiconductors”, Phys. Rev. B 78, 035207 (2008)
[24] Yoon Sung Nam, Sang Wook Lee, K. S. Baek, S. K. Chang, Jae-Ho Song, Jung-Hoon Song, Seok Kyu Han, Soon-Ku Hong, and Takafumi Yao, “Anisotropic optical properties of free and bound excitons”, Appl. Phys. Lett. 92, 201907(2008)
[25] Steven M. George, “Atomic Layer Deposition: An Overview”, Chem. Rev., 110, 111 (2010)
[26] Ching-Shun Kua, Hsin-Yi Lee, Jheng-Ming Huang, Chih-Ming Lin, “Epitaxial growth of ZnO films at extremely low temperature by atomic layer deposition with interrupted flow”, Mater. Chem. Phys. 120, 236 (2010)
[27] Schwartz, A.J., Kumar, M.. Adams, B.L. and Field, D.P., “Electron Backscatter Diffraction in Materials Science”, Springer Verlag, New York, p.2 (2000)
[28] Wei-Lin Wangn, Yen-TengHo, Kun-AnChiu, Chun-YenPeng, LiChang, “Structural property of m-plane ZnO epitaxial film grown on LaAlO3 (112) substrate”, J. Cryst. Growth, 312, 1179 (2010)
[29] Kuang-Pi Liu, Kuo-Yi Yen, Ping-Yuan Lin, Jyh-Rong Gong, Kun-Da Wu, Wei-Li Chen, “Structural characteristics of ZnO films grown on (0001) or (11-20) sapphire substrates by atomic layer deposition”, J. Vac. Sci. Technol. A 29, 03A101-1 (2011)
[30] Jae Wook Lee, Jung-Hyun Kim, Seok Kyu Han, Soon-Ku Hong, Jeong Yong Lee, Sun Ig Hong, Takafumi Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates”, J. Cryst. Growth 312, 238 (2010)
[31] Y. M. Sun, Ph. D. Thesis, University of Science and Technology of China, (July 2000)
[32] B. K. Meyer, J. Sann, D. M. Hofmann, C. Neumann, A. Zeuner, “Shallow donors and acceptors in ZnO”, Semicond. Sci. Technol. 20, 562 (2005)
[33] S. Yamauchi, Y. Goto, T. Hariu, “Photoluminescence studies of undoped and nitrogen-doped ZnO layers grown by plasma-assisted epitaxy”, Semicond. Sci. Technol. 24, 105014 (2009)
[34] T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, Li Chang, and D. Y. Lin , “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition”, J. Appl. Phys. 108, 073504 (2010)
[35] Linxing Shi, Liyong Jiang, Hailin Wang and Xiangyin Li, “Depolarization of backscattered linearly polarized light from ZnO thin film”, Chinese Optics Letters 5, 720 (2007)
[36] J. M. Ziman, “Principles of The Theory of Solids”, Second Edition, Cambridge University Press, p.153, (1979)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code