Responsive image
博碩士論文 etd-0824112-115817 詳細資訊
Title page for etd-0824112-115817
論文名稱
Title
鋼鐵工廠周界及鄰近敏感點之懸浮微粒物化特性分析及污染源解析
Physicochemical Characteristics and Source Apportionment of Ambient Suspended Particles at Boundary and Sensitive Sites Surrounding a Steel Manufacturing Plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-12
繳交日期
Date of Submission
2012-08-24
關鍵字
Keywords
化學質量平衡受體模式、主成份分析、化學成份分析、物化指紋特徵、懸浮微粒採樣、鋼鐵業
physicochemical characteristics, Steel industry, principal component analysis, CMB receptor model, sampling and analysis, suspended particulate matter
統計
Statistics
本論文已被瀏覽 5677 次,被下載 921
The thesis/dissertation has been browsed 5677 times, has been downloaded 921 times.
中文摘要
鋼鐵業為高雄都會區重要的固定及逸散污染源之一,同時亦屬高污染性工業,其煉製過程會產生大量懸浮微粒排放,而其中一貫作業煉鋼廠(包括燒結工場、焦爐工場及原物料堆置場)所排放之懸浮微粒,若飄散至鋼鐵廠周邊恐影響民眾之健康及觀感。
為瞭解鋼鐵業對小港地區環境空氣品質之影響,並釐清其可能污染來源,本研究自2011年7月至2012年3月於小港地區選定某鋼鐵廠進行廠區周界(A1~A5)及周邊地區敏感點(S1~S5)之懸浮微粒採樣,主要採樣設備包括PM10高量採樣器、雙粒徑分道採樣器、微孔均勻沉降衝擊器及落塵桶等四種,依四季分別進行採樣且採集不同粒徑範圍之懸浮微粒,其中每季皆以PM10高量採樣器及雙粒徑分道採樣器執行連續三日且每日連續24小時之採樣,同時架設落塵桶執行長達1個月之採樣,藉以瞭解廠區周界及周邊地區敏感點之懸浮微粒濃度空間分佈情形及季節變化趨勢。懸浮微粒物理及化學成份分析項目包括質量濃度、粒徑分佈、落塵量、水溶性離子成份、金屬元素成份及碳成份。
本研究結果顯示,廠區周界PM10平均濃度(53.54~203.56 μg/m3)較周邊地區敏感點(55.06~140.07 μg/m3)為高,而PM2.5平均濃度同樣以廠區周界(23.10~120.21 μg/m3)較周邊地區敏感點(12.52~65.62 μg/m3)為高,且皆呈現夏季期間濃度較低之趨勢,顯示PM10及PM2.5濃度變化皆受小港地區氣象條件(如:盛行風向、風速及相對濕度等)之影響而有所差異,另利用t檢定分析PM10及PM2.5濃度之差異性分析得知,廠區周界及周邊地區敏感點於不同季節中皆呈現不顯著(p-value >0.05),顯示兩區域應有共同之污染來源。
化學成份分析結果顯示,廠區周界及周邊地區敏感點之水溶性離子成份皆以二次無機性氣膠(SO42-、NO3-及NH4+)為主,且由[NO3-]/[SO42-]比值判斷離子來源多半來自固定污染源。而金屬元素成分則以Fe、Al、K及Ca為主,主要污染來源為工業排放污染、交通污染源及道路揚塵,其中廠區周界之原物料堆置場亦為主要污染源之一。有機碳(OC)及元素碳(EC)濃度藉由相關性分析發現,廠區周界及周邊地區敏感點皆以原生性污染源為主(如:汽機車尾氣排放、工業製程排放、道路揚塵及人為活動等)。
主成份分析及受體模式解析結果顯示,廠區周界及周邊地區敏感點於不同季節之污染來源與季節盛行風向有密切關係,且以工業污染排放(包括煉油廠、火力發電廠、南區焚化爐、一貫作業煉鋼廠及電弧爐煉鋼廠等)為主,其次為交通污染源及衍生性污染物,而敏感點部份測站(如:S1、S4及S5測站)則因較靠近海域,海水飛沫亦為污染來源之一。
Abstract
Steel industry is a highly polluted industry and one of the most important stationary sources in Kaohsiung City. The steel manufacturing process could emit a huge amount of particles, such as the sintering process, the blast furnace operation, and the raw material handling process. Suspended particles emitted from steel industry could deteriorate ambient air quality and cause adverse effects on human health.
In order to understand the impact of steel industry on ambient air quality in Siaogang District and to identify potential pollution sources, this study selected a integrated steel manufacturing plant located at Siaogang District to conduct a sampling protocol of suspended particulate matter (PM) at ambient sites (A1~A5) and sensitive sites (S1~S5) from July 2011 to March 2012. The size distribution of suspended particles in four seasons was measured with PM10 high-volume samplers, dichotomous samplers, and MOUDI for 3 days (24 hours for single sampling), and dustfall samplers for one month, to investigate the spatial distribution and temporal variation of PM concentration. After sampling, the physicochemical properties of PM, including mass concentration, particle size distribution, dustfall concentration, water-soluble ionic species, metallic elements, and carbonaceous contents, were further analyzed.
Field measurement of ambient PM showed that the averaged ambient PM10 concentration (53.54 - 203.56 μg/m3) were higher than sensitive sites (55.06 - 140.07 μg/m3) and the averaged ambient PM2.5 concentration of ambient (23.10 - 120.21μg/m3) were higher than sensitive sites (12.52 - 65.62 μg/m3). No matter ambient or sensitive sites, it showed a tendency of lower concentration in summer, indicating that concentration variation of PM10 and PM2.5 were highly affected by meteorological factors (such as wind direction, wind speed, and relative humidity) in Siaogang District. Furthermore, a t-test result showed that ambient and sensitive sites have similar pollution sources since the p-values were in significantly different.
Chemical analysis of PM results showed that the most abundant water-soluble ionic species of PM at the ambient and sensitive sites were secondary inorganic aerosols (SO42-, NO3-, and NH4+) and [NO3-]/[SO42-] showed that ionic species were mainly emitted from stationary sources. Fe, Al, K and Ca were the major metallic elements of this study, and the major pollution sources contain industries, traffics, and road dusts. Additionally, the raw material handling process was the major pollution source of PM. Correlation analysis of OC and EC showed that PM at ambient and sensitive sites were originated from primary sources, such as vehicles, industries, road dusts, and human activities.
Results obtained from PCA and CMB receptor modeling showed that both PM2.5 and PM10 highly correlated with wind direction in different season and the major pollution sources were industry pollution (including petroleum refineries, power plants, waste incinerators, consistent operating steel mills and electric arc furnace steel mills, etc.), followed by local traffics and derivative. Furthermore, marine aerosols were one of the important pollution sources at sensitive sites (S1, S4, and S5) where close to the ocean.
目次 Table of Contents
目 錄
頁次
謝誌………………………………………………………………………..… I
中文摘要…………………………………………….….......................…….. III
英文摘要…………………………………………….….......................…….. V
目錄…………………………………………….….......................……….…. VII
表目錄…………………….………………….……...…..….……….………. X
圖目錄………………………………….……...…………………………….. XII
第一章 前言……..…………………………..……..……………….……... 1-1
1-1 研究緣起….....……….…………..….……….…………….……... 1-1
1-2 研究目的………………..………..…...………..…………….….... 1-2
第二章 文獻回顧……..…………………………………………………… 2-1
2-1 懸浮微粒生成機制及物化特性…………………………………... 2-1
2-1-1 懸浮微粒定義及種類………………………………………... 2-1
2-1-2 懸浮微粒運動特性及生成機制……………………………... 2-4
2-1-3 水溶性離子成份特性………………………………………... 2-6
2-1-4 金屬元素成份特性…………………………………………... 2-8
2-1-5 碳成份特性…………………………………………………... 2-10
2-2 懸浮微粒與氣象因子相關性……………………………………... 2-10
2-2-1 溫度與相對濕度……………………………………………... 2-11
2-2-2 風速與方向…………………………………………………... 2-11
2-3 鋼鐵廠污染源及特性…………………………………………… 2-12
2-3-1 一貫作業煉鋼廠……………………………………………... 2-12
2-3-2 鋼鐵業懸浮微粒相關研究文獻……………………………... 2-17
2-4 主成份分析法(Principal Component Analysis)之應用…...……… 2-24
2-5 化學質量平衡受體模式(CMB Receptor Model)之應用………… 2-24
第三章 研究方法………………………………………………………….. 3-1
3-1 採樣規劃…………………………………………………………... 3-1
3-1-1 採樣地點規劃………………………………………………... 3-1
3-1-2 採樣時間規劃………………………………………………... 3-1
3-2 採樣方法與原理…........................................................................... 3-2
3-2-1 懸浮微粒採樣方法及原理………………………………….. 3-2
3-2-2 PM10高量採樣器…………..…….......……..……………….. 3-3
3-2-3 雙粒徑分道採樣器…………………………………………... 3-4
3-2-4 微孔均勻沉降器……………………………………………... 3-6
3-2-5 落塵桶………………………………………………………... 3-8
3-3 懸浮微粒化學成份分析方法……………………………………... 3-9
3-3-1 水溶性離子成份分析方法…………………………………... 3-9
3-3-2 金屬元素成份分析方法……………………………………... 3-11
3-3-3 碳成份分析方法……………………………………………... 3-12
3-4 品保與品管………………………………………………………... 3-13
3-4-1 採樣方法之品保與品管…………………………………….. 3-13
3-4-2 分析方法之品保與品管…………………………………..… 3-15
3-5 大氣懸浮微粒之污染源解析方法……………………………..… 3-18
3-5-1 主成份分析法(Principal Component Analysis)……………... 3-18
3-5-2 主成份分析法(CMB Recepter Model)………….…………... 3-20
第四章 結果與討論……………………………………………………..… 4-1
4-1 採樣期間小港區氣象條件分析…………………………………... 4-1
4-1-1 相對濕度…………………………………………………..… 4-1
4-1-2 風速與方向……………………………………………….…. 4-2
4-2 懸浮微粒濃度變化趨勢分析……………………………………... 4-7
4-2-1 懸浮微粒濃度季節變化趨勢………………………………... 4-7
4-2-2 落塵量季節變化趨勢……………………………………....... 4-17
4-2-3 粒徑分佈分析………………………………………………... 4-18
4-3 懸浮微粒化學成份變化趨勢分析………………………………... 4-25
4-3-1 懸浮微粒中水溶性離子成份季節變化趨勢分析…………... 4-25
4-3-2 懸浮微粒中金屬元素成份季節變化趨勢分析……………... 4-32
4-3-3 懸浮微粒中碳成份季節變化趨勢分析……………………... 4-36
4-4 污染源相關性分析………………………………………………... 4-44
4-4-1 主成份分析法判別主要污染源種類………………………... 4-44
4-4-2 化學質量平衡法解析污染源貢獻量………………………... 4-54
第五章 結論與建議……………………………………………………….. 5-1
5-1 結論………………………………………………………………... 5-1
5-2 建議………………………………………………………………... 5-3
參考文獻
附錄A 分析方法之品保品管
附錄B 原始分析數據






表目錄

表2-1 我國懸浮微粒濃度標準值………………………………………….. 2-1
表2-2 金屬元素成份主要污染來源……………………………………….. 2-8
表2-3 煉製不同鋼材時作業環境重金屬暴露濃度……………………….. 2-18
表2-4 不鏽鋼廠作業環境空氣重金屬燻煙檢測結果…………………….. 2-18
表2-5 美國環保署污染源資料庫中鑄鐵廠排放微粒之組成資料……….. 2-20
表2-6 乾濕兩季懸浮微粒之礦物成份…………………………………….. 2-23
表3-1 定點環境採樣項目及設備………………………………………….. 3-3
表3-2 微孔均勻沉降衝擊器截取氣動直徑……………………………….. 3-8
表3-3 元素分析儀操作條件一覽表……………………………………….. 3-13
表3-4 離子層析儀之方法偵測極限……………………………………….. 3-17
表3-5 金屬元素成份分析之方法偵測極限……………………………….. 3-18
表4-1 四季採樣期間相對濕度彙整表…………………………………….. 4-1
表4-2 四季採樣期間廠區周界及敏感點之風向彙整表………………...... 4-3
表4-3 四季採樣期間各測站之落塵量彙整表…………………………….. 4-17
表4-4 春季廠區周界之PM10主成份因子負荷矩陣表……………………. 4-45
表4-5 夏季廠區周界之PM10主成份因子負荷矩陣表……………………. 4-46
表4-6 秋季廠區周界之PM10主成份因子負荷矩陣表……………………. 4-47
表4-7 冬季廠區周界之PM10主成份因子負荷矩陣表……………………. 4-49
表4-8 春季敏感點之PM10主成份因子負荷矩陣表………………...…….. 4-50
表4-9 夏季敏感點之PM10主成份因子負荷矩陣表………………...…….. 4-51
表4-10 秋季敏感點之PM10主成份因子負荷矩陣表………..……...…….. 4-52
表4-11 冬季敏感點之PM10主成份因子負荷矩陣表………………...….... 4-54
表4-12 受體模式解析之指紋資料庫彙整表……………………………… 4-56



















圖目錄

圖1-1 本研究執行流程圖………………………………………………….. 1-3
圖2-1 大氣懸浮微粒粒徑分佈圖………………………………………….. 2-2
圖2-2 典型大氣懸浮微粒粒徑分佈圖…………………………………….. 2-2
圖2-3 水溶性離子及金屬元素物種佔PM10之百分比……………………. 2-5
圖2-4 粗微粒與細微粒之A/C比值………………………………………... 2-7
圖2-5 燒結場作業流程圖………………………………………………….. 2-14
圖2-6 高爐場作業流程圖………………………………………………….. 2-16
圖3-1 鋼鐵廠區周界及周邊地區敏感點懸浮微粒採樣位置示意圖…….. 3-2
圖3-2 雙粒徑分道採樣器示意圖………………………………………….. 3-5
圖3-3 微孔均勻沉降衝擊器示意圖……………………………………….. 3-7
圖4-1 四季採樣期間周邊地區敏感點之風瑰圖………………………….. 4-4
圖4-2 四季採樣期間鋼鐵廠區周界A1監測站之風瑰圖………………… 4-5
圖4-3 四季採樣期間鋼鐵廠區周界A3監測站之風瑰圖………………… 4-6
圖4-4 春季採樣期間懸浮微粒濃度空間分佈趨勢圖…………………….. 4-10
圖4-5 夏季採樣期間懸浮微粒濃度空間分佈趨勢圖…………………….. 4-10
圖4-6 秋季採樣期間懸浮微粒濃度空間分佈趨勢圖…………………….. 4-14
圖4-7 冬季採樣期間懸浮微粒濃度空間分佈趨勢圖…………………….. 4-14
圖4-8 春季採樣期間懸浮微粒等濃度分佈圖…………………………….. 4-15
圖4-9 夏季採樣期間懸浮微粒等濃度分佈圖………………...................... 4-16
圖4-10 秋季採樣期間懸浮微粒等濃度分佈圖…………………………… 4-16
圖4-11 冬季採樣期間懸浮微粒等濃度分佈圖…………………………… 4-16
圖4-12 四季採樣期間落塵量變化趨勢圖………………………………… 4-18
圖4-13 四季採樣期間落塵量等濃度分佈圖……………………………… 4-19
圖4-14 夏季採樣期間鋼鐵廠區周界採樣期間懸浮微粒粒徑分佈圖…… 4-21
圖4-15 夏季採樣期間周邊地區敏感點採樣期間懸浮微粒粒徑分佈圖… 4-22
圖4-16 冬季採樣期間鋼鐵廠區周界採樣期間懸浮微粒粒徑分佈圖…… 4-23
圖4-17 冬季採樣期間周邊地區敏感點採樣期間懸浮微粒粒徑分佈圖… 4-24
圖4-18 四季採樣期間鋼鐵廠區周界PM10中水溶性離子濃度分佈圖…... 4-27
圖4-19 四季採樣期間鋼鐵廠區周界PM2.5中水溶性離子濃度分佈圖….. 4-27
圖4-20 四季採樣期間周邊地區敏感點PM10中水溶性離子濃度分佈圖... 4-29
圖4-21 四季採樣期間周邊地區敏感點PM2.5中水溶性離子濃度分佈圖.. 4-29
圖4-22 四季採樣期間鋼鐵廠區周界之[NO3-]/[SO42-]比值………………. 4-31
圖4-23 四季採樣期間周邊地區敏感點之[NO3-]/[SO42-]比值……………. 4-31
圖4-24 四季採樣期間鋼鐵廠區周界PM10中金屬元素濃度分佈圖…...… 4-33
圖4-25 四季採樣期間鋼鐵廠區周界PM2.5中金屬元素濃度分佈圖…….. 4-33
圖4-26 四季採樣期間周邊地區敏感點PM10中金屬元素濃度分佈圖...… 4-35
圖4-27 四季採樣期間周邊地區敏感點PM2.5中金屬元素濃度分佈圖….. 4-35
圖4-28 四季採樣期間鋼鐵廠區周界PM10中碳成分濃度分佈圖………... 4-38
圖4-29 四季採樣期間鋼鐵廠區周界PM2.5中碳成分濃度分佈圖……….. 4-38
圖4-30 四季採樣期間周邊地區敏感點PM10中碳成分濃度分佈圖……... 4-40
圖4-31 四季採樣期間周邊地區敏感點PM2.5中碳成分濃度分佈圖…….. 4-40
圖4-32 鋼鐵廠區周界及周邊地區敏感點四季採樣期間PM10之OC與EC濃度相關性……………………………………………………... 4-42
圖4-33 鋼鐵廠區周界及周邊地區敏感點四季採樣期間PM2.5之OC與EC濃度相關性……………………………………………………... 4-43
圖4-34 春季採樣期間PM10懸浮微粒污染源種類及貢獻率分佈圖…..…. 4-66
圖4-35 夏季採樣期間PM10懸浮微粒污染源種類及貢獻率分佈圖..……. 4-66
圖4-36 秋季採樣期間PM10懸浮微粒污染源種類及貢獻率分佈圖..……. 4-67
圖4-37 冬季採樣期間PM10懸浮微粒污染源種類及貢獻率分佈圖..……. 4-67
參考文獻 References
Andreae, M.O., Talbot, R.W., Andreae, T.W., and Harriss, R.C., “Formic and acetic acids over the central amazon region, Brazil,” EOS-Trans, AGU 67, 249, 1986.
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, 13, 98-104, 1979.
Appel, B.R., and Tokiwa, Y., “Atmospheric particulate nitrate sampling errors due to reactions with particulate and gaseous strong acids,” Atmospheric Environment, 15, 1087-1089, 1981.
Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F., and Ray, B.J., “Relationships among aerosol constituents from Asia and the North Pacific during PEM-West,” Geophysical Research, 101(D1), 2011-2023, 1996.
Attri, A.K., Tandon, A., and Yadav, S., “Coupling between meteorological factors and ambient aerosol load,” Atmospheric Environment, 44, 1237-1243, 2010.
Banerjee, S., Mallick, K., Bhattacharya, B.K., Chaurasia, S., Dutta, S., Nigam, R., Mukherjee, J., Kar, G., and Gadgil, A.S., “Evapotranspiration using MODIS data and limited ground observations over selected agroecosystems in India,” International Journal of Remote Sensing, 28, 2091-2110, 2007.
Cadle, S.H., and Mulawa, P.A., “Atmospheric carbonaceous species measurement methods comparison study:General motors result,” Aerosol Science and Technology, 12, 128-141, 1990.
Chow, J.C., Fairley, D., Watson, J.G., DeMandel, R., Fujita, E.M., Lowenthal, D.H., Zhiqiang, Lu., Frazier, C.A., Long, G., and Cordova, J., “Source apportionment of wintertime PM10 at San Jose, California,” Journal of Environmental Engineering, 121, 378-387, 1995.
Chow, J.C., Watson, J.G., Zhiqiang, Lu., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H., Magliano, K., Parrish, D., and Trainer, M., “Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX,” Atmospheric Environment, 30, 2079-2112, 1996.
Chen, S.J., Liao, S.H., Jian, W.J., and Lin, C.C., “Particle size distribution of aerosol carbons in ambient air,” Environment International, 23, 4, 475-488, 1997.
Cheng, M.T., and Tsai, Y.I., “Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas,” The Science of the Total Environment, 263, 101-114, 2000.
Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., and Guascito, M.R., “Characterisation and source apportionment of PM10 in an urban background site in Lecce,” Particuology, 2010.
Gladtke, D., Volkhausen, W., and Bach, B., “Estimating the contribution of industrial facilities to annual PM10 concentrations at industrially influenced sites” Atmospheric Environment, 43, 4655-4665, 2009.
Harrison, R.M., Deacon, A.R., and Jones, M.R., “Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.),” Atmospheric Environment, 31, 4103-4117, 1997.
Hinds, W.C., Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles, John Willy & Sons:New York, 1999.
Hopke, P.K., Casuccio, G.S., “Scanning Electron Micrroscopy”. In:Hopke, P.K., editor, “Receptor Modeling for Air Quality Management,” Elsevier Science Publishing Company Inc., New York, 149-212, 1991.
Hung, L.K., Yuan, C.S., Wang, G.Z., and Wang, K., “Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin, China,” Particuology, 9(1), 32-38, 2011.
John, W., Wall, S.M., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, 22, 8, 1649-1656, 1988.
Larson, R.A., “The antioxidants of higher plants,” Phytochem, 27(4), 969-978, 1988.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Lonati, G., Giugliano, M., and Ozgen, S., “Primary and secondary components of PM2.5 in Milan (Italy),” Environment International, 34, 665-670, 2008.
Mamane, Y., “Estimate of municipal refise incinerator contribution to Philadelphia aerosol using single particle analysis,” Atmospheric Environment, 24B, 127-135, 1986.
Mangelson, N.F., Lewis, L., Joseph, J.M., Wilkerson, T., amd Jensen, D.T., “The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley,” Journal of The Air & Waste Management Association, 47, 167-175, 1997.
Na, K., Sawant, A.A., Song, C., and Cocker, III, D.R., “Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California,” Atmospheric Environment, 38,1345-1355, 2004.
Nilssonm B.A., “Model of the relation between aerosol extinction and meteorological parameters,” Atmospheric Environment, 28, 815-825, 1994.
Nunes, T.V., and Pio, C.A., “Carbonaceous aerosol in industrial and coastal atmospheric,” Atmospheric Environment, 27A, 8, 1339-1346, 1993.
Ohta, S., and Okita, T., “A chemical characterization of atmospheric aerosol in Sapporo,” Atmospheric Environment, 24A, 4, 815-822, 1990.
Pakkanen, T.A., “Study of formation of coarse particle nitrate asrosol,” Atmospheric Environment, 30,2475-2482, 1996.
Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., D. Krewski, K. Ito, and Thurston, G.D., “Lung cancer, cardio-pulmonary mortality, and long-term exposure to fine particulate air pollution,” J. Am. Med. Assoc, 287, 1132-1141, 2002.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T., “Source of fine organic aerosol 1. Charbroiler and meat cooking operations,” Environment Science and Technology, 25, 1112-1125, 1991.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., “Quantification of urban organic aerosols at a molecular level:identification, abundance and seasonal variation,” Atmospheric Environment, 27A, 1309-1330, 1993.
Schroeder, W.H., Dobson, M., Kane, D.M., and Johnson, N.D., “Toxic tracer element associated with air bone particulate matter:A review,” Journal of Air and Waste Management, 37, 1267-1285, 1987.
Serne, J.C., and Mauch, S.C., “Ambient air toxics monitoring for greater detroit resource recovery facility:Inter-Site comparisions,” AWMA 84th Annual Meeting and Exhibition, 16, 91-80, 1988.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmom, L.G., Shao, M., and Slanina, S., “Source apportionment of PM2.5 in Beijing by positive matrix factorization,” Atmospheric Environment, 40, 1526-1537, 2006.
Tang, I.N., Munkelwitz, H.R., and Davis, J.G., “Aerosols growth studies:preparation and growth measurements of monodisperse salt aerosols,” J. of Aerosols Sci., 8, 149-159, 1977.
Tandon, A., Yadav, S., and Attri, A.K., “City-wide sweeping a source for respirable particulate matter in the atmosphere,” Atmospheric Environment, 42, 1064-1069, 2008.
Tirabassi, T., and Rizza, U., “Applied dispersion modeling for ground-level concentrations from elevated sources,” Atmospheric Environment, 28, 4, 611-615, 1994.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los angeles summer midday particulate carbon:Primary and secondary aerosol,” Environment Science and Technology, 25, 1788-1793, 1991.
Venkataraman, C., Lyons, J.M., and Friedlander, S.K., “Size distribution of polycyclic aromatic hydrocarbon and element carbon:Sampling Measurement Methods and Source Characterization,” Environmental Science and Technology, 28, 4, 563-572, 1994.
Vecchi, R., Marcazzan, G., Valli, G., Ceriani, M., and Antoniazzi, C., “The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy),” Atmospheric Environment, 39, 4437-4446, 2004.
Wall, S.M., John, W., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, 22, 1649-1656, 1988.
Watson, J.G., and Chow, J.C., “Clear sky visibility as a challenge for society,” Annul Review of Energy and the Environment, 19, 241-266, 1994.
Watson, J.G., “The science of fine particulate metter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, 1-14, 1998.
Wang, H., and Shooter, D., “Water soluble ions of atmospheric aerosols in three New Zealand cities:seasonal changes and sources,” Atmospheric Environment, 35, 6031-6040, 2001.
Wedepohl, K.H., “The composition of the upper Earth’s crust and the natural cycles of selected metals,” Metals and their Compounds in the Environment, 1987.
Whitby, K.T., and Cantrell, “Fine particles in international conference on environmental sensing and assessment” Las Vegas, NY, Institute of Electrical and Electronic Engineer, 1975.
Wu, P., and Okada, K., “Nature of coarse nitrate particles in the atmosphere-A single particle approach,” Atmospheric Environment, 28, 2053-2060, 1994.
Zhang, X., and McMurry, P.H., “Theoretical analysis of evaporative lossed from impactor and filter deposits,” Atmospheric Environment, 21, 1779-1789, 1987.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmospheric from Nanjin, China,” Environmental Monitoring and Assessment, 154, 451-458, 2009.
Ziemba, L.D., Fischer, E., Griffin, R.J., and Talbot, R.W., “Aerosol acidity in rural New England:Temporal trends and source region analysis,” Journal of Geophysical Research, 112, 2007.
交通部中央氣象局,www.cwb.gov.te/V7/
高雄市主計處,“合併後大高雄市各區人口統計”,2011。
行政院環境保護局,“空氣污染物排放清冊”,2007。
行政院環境保護署,”台北縣、桃園縣及宜蘭縣部份土壤源含量細密調查報告”,1989
吳義林、蔡德明,“高屏地區大寮測站PM10與PM2.5之組成份特徵研究”,氣膠研討會論文集,1998。
吳仲翼,“廈門灣大氣懸浮微粒濃度日夜變化趨勢分析及污染源指紋特徵探討”,國立中山大學環境工程研究所碩士論文,2011
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000
陳瑞仁、林志忠、張加欽、徐誌宏、陳信儒,“大氣中硝酸鹽及硫酸鹽之粒徑分佈及乾沉降速度”,第十三屆空氣污染控制技術研討會論文集,1119-1126,1996。
陳瑾,“環境中懸浮微粒採樣方法比較及其水溶性離子之特性分析研究-以斗六及崙背站為例”,國立雲林科技大學環境與安全衛生工程所碩士論文,2006。
鍾進忠,“屏東地區大氣PM10成份特性探討”,國立屏東科技大學環境工程與科學所碩士論文,2001。
黃建達、林宗毅、戴華山、林瑞敏,“高雄市大氣懸浮微粒PM2.5及PM2.5-10之化學組成特徵研究”,第十六屆空氣污染控制技術研討會論文集,第7-12頁,1999。
黃美倫,“中部空品區大氣氣膠中水溶性離子微粒之特性探討”,國立中興大學環境工程學系碩士論文,2001。
王弼正、李崇德、陳鏡廉,”大台北地區PM2.5細粒氣膠污染來源推估”,第十四屆空氣污染控制技術研討會,402-407,1997。
王景良,“中部空品區污染源逸散粉塵的組成分析”,國立中興大學環境工程學系碩士論文,2000。
鄭曼婷,“台中沿海及都會區氣膠特性及來源分析”,國科會/環保署科技合作研究計畫期末報告,1999。
樓基中、袁中新,“高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市環保局研究報告,1995。
蔣本基、楊末雄、王竹方、張勝祺、魏耀揮、周仲島、望熙榮、鄭曼婷、詹長權、王秋森、杜悅元,“台灣北、中部地區受體模式建立與應用研究(一),行政院環境保護署研究報告”,1993。
謝徨麒,“固定污染源排放金屬元素之特徵”,國立成功大學環境工程學系碩士論文,2001。
周宇光,“重工業周邊地區空氣中懸浮微粒物化特性探討”,國立中山大學環境工程研究所碩士論文,2009。
唐麗秋,“銅二級冶煉廠之煙道廢氣對週遭重金屬濃度分佈之影響及其風險評估研究”,大葉大學環境工程學系碩士論文,2008。
江寒嶽,“電弧爐煉鋼廠空氣粉塵金屬濃度與員工血中金屬濃度的關係以及血鉛與職業噪音暴露對聽力損失的影響”,台灣大學職業醫學與工業衛生研究所碩士論文,2007。
謝艾芸,“原料組成對鐵礦燒結製程重金屬排放特徵及其流佈之影響”,國立成功大學環境醫學研究所碩士論文,2007。
賴順安,“鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵”,國立成功大學環境工程學系碩士論文,1999。
任漢傑,“鋼鐵業原物料堆置場逸散性懸浮微粒採樣及指紋資料建立”,大仁科技大學環境管理研究所碩士論文,2008。
歐木已,“轉爐石室內倒渣場作業改善對污染減量之研究-以中鋼為例”,屏東科技大學環境工程與科學系碩士論文,2005。
盧彥勳,“大氣中微粒污染與重金屬成分之模擬與分析”,東海大學環境科學與工程學系碩士論文,2009。
邱嘉斌,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程學系碩士論文,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code