Responsive image
博碩士論文 etd-0824112-120928 詳細資訊
Title page for etd-0824112-120928
論文名稱
Title
煉鋼脫硫渣之特性分析及再利用潛勢評估
Characteristic analysis and reuse potential assessment of the steel-making desulfurization slag
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-27
繳交日期
Date of Submission
2012-08-24
關鍵字
Keywords
煉鋼副產物、脫硫渣、吸附、養殖池水質、廢棄物再利用
waste reuse, aquaculture water quality, adsorption, desulfurization slag (DS), byproduct of steel making
統計
Statistics
本論文已被瀏覽 5670 次,被下載 0
The thesis/dissertation has been browsed 5670 times, has been downloaded 0 times.
中文摘要
爐石為煉鋼廠一貫作業產出之副產物,其中,高爐鐵水脫硫後,冷卻之固體物稱為脫硫渣(desulfurization slag, DS),因具高pH值特性,故至今仍無法有效資源再利用。本研究之目的針對經水洗及篩選程序處理後產生「脫硫渣細料」,進行資源化之可行性評估。基本特性分析結果顯示,脫硫渣細料之化學組成為CaO、SiO2、Fe2O3及Al2O3,主要組成晶相為SiO2、Ca(OH)2及CaCO3。表面微觀結構分析及比表面積分析結果顯示,脫硫渣細料表面孔隙含量較少,屬非多孔性材料。由pH值及鹼度釋出試驗顯示,脫硫渣細料可提升水中之鹼度,因此除將其做為土壤改良劑以改善酸性土壤外,亦可用於改善酸性水體。透過重金屬溶出試驗結果顯示,脫硫渣細料所含重金屬穩定性高,因此於環境中不易釋出。再利用試驗部分則評估其做為低價吸附材及藻類培養營養源之潛力。由吸附試驗結果顯示,當氨氮初始濃度為10 mg/L及30 mg/L時,飽和吸附量分別為0.036 mg/g及0.069 mg/g,且吸附行為較符合Langmuir等溫吸附曲線之描述;當磷酸鹽初始濃度為10 mg/L及30 mg/L時,飽和吸附量分別為26.4 mg/g及76.6 mg/g。另經熱力學(thermodynamics)參數計算結果顯示,脫硫渣細料對於氨氮之吸附反應為吸熱非自發程序;磷酸鹽部分為放熱自發程序,而由吸附熱(ΔH)判斷,脫硫渣細料吸附氨氮屬於物理吸附,而吸附磷酸鹽則為化學吸附。藻類培養試驗結果顯示,添加25 mg/L脫硫渣細料可使Chlorella sp.有較快之生長速率,故添加適量脫硫渣細料有助於Chlorella sp.生長。此外,本研究以脫硫渣細料為護岸材料之水產養殖池做為現地研究對象,結果顯示護岸前後對於地下水及養殖池水並無顯著影響,池水有機物特徵圖譜分析顯示,在Ex/Em: 330/400 nm與250/390 nm均有明顯波峰反應,分別為似腐植質(humus-like)及水溶性之類微生物代謝物質(soluble microbial product, SMP)。由藻類觀測得知,養殖池水中優勢藻類包括柵藻(Scenedesmus sp.)及小球藻(Chlorella sp.),其存在表示養殖池之水質狀況良好。周遭環境介質重金屬分析結果顯示,其重金屬含量均可符合相關管制標準。綜合上述,本研究測試之材料並不影響水中之生態系統,對環境無明顯之影響,故脫硫渣細料為一種環境友善之資源化物質,具有極高之再利用潛勢。
Abstract
Furnace slag is the by-product from steel making process. Desulfurization slag (DS) was produced from the desulphurization process of molten irons in high temperature furnaces processes. DS is heterogeneous oxide materials which are compounded by some main oxides such as SiO2, FeO, CaO, SiO2, MnO, Al2O3, and MgO due to their mass percentage. Because DS has high pH characteristics (12.5), this limits its recycle and reuse. The objective of this study was to evaluate the potential of applying DS as the construction materials or amendments in the aquacultural industry to improve the aqualcultural water quality in the fish farm. The basic characteristic analyses show that the major chemical compositions of powder DS were CaO, SiO2, Fe2O3 and Al2O3. The major crystalline phase composed of SiO2, Ca(OH)2 and CaCO3. Results of DS release test show that when DS could increase pH and alkalinity value in water. Results of micro-structure analysis of powder DS surface showed there were many non-porous materials and heavy metals on DS. Results from the nutrient removal tests show that the ammonia nitrogen adsorption capacity were 0.036 mg/L and 0.069 mg/L when the initial concentration were 10 mg/L and 30 mg/L, respectively. Results form the adsorption model validation test indicate that the adsorption phenomena could fit in Langmuir model. The adsorption capacities of phosphate were 26.4 mg/L and 76.6 mg/L when the initial phosphate concentrations were 10 mg/L and 30 mg/L, respectively. The calculated values of thermodynamic parameters show that the adsorption reaction for ammonia nitrogen was endothermic non-spontaneous process, and the adsorption reaction for phosphate was exothermic spontaneous process. However, the enthalpy change (ΔH) showed that adsorption reaction of DS for ammonia nitrogen was physical adsorption, and the adsorption reaction for phosphate was chemical sorption. In the algae culture experiment, results show that when 25 mg/L of DS was supplied, the growth rate of Chlorella sp. could be enhanced. Thus, the powder DS could enhance the growth of Chlorella sp. A field study using a fish farm as the study site was conducted to evaluate the impact of DS on fish farm water quality when DS was applied as the filling and construction materials of the fish farm. Results show that addition of DS had no significant effect on groundwater and pond water quality. Results from the organic matter analysis of the pond water using EEFM show that humus-like and soluble microbial product (SMP) materials were detected. The dominant algae in the pond water included Scenedesmus sp. and Chlorella sp. indicating the pond water quality was in good conditions. Addition of DS would increase of water alkalinity preventing the acidification of pond water due to the fish feed and fish excreta. Results of heavy metal analysis of soil, groundwater, and pond water complied with the relevant environmental standards. Results of this study will aid in understanding the characteristics of DS and the results will be useful in designing a DS reuse system to achieve the zero waste and resource reuse goal.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 脫硫渣來源及基本特性 3
2.1.1 製程概述 3
2.1.2 物理及化學性質 4
2.2 重金屬溶出試驗與基質結合型態探討 9
2.3 吸附基本理論 18
2.3.1 物理及化學吸附 19
2.3.2 吸附模式評估 20
2.3.3 吸附熱力學 26
2.3.4 影響吸附速率之各項因子 27
2.4 螢光激發發射光譜圖 28
2.5 脫硫渣再利用 30
第三章 材料與方法 37
3.1 研究流程 37
3.2 實驗材料與設備 39
3.2.1 實驗藥品 39
3.2.2 實驗器材 39
3.3 研究方法 41
3.3.1 脫硫渣細料基本特性分析 41
3.3.2 重金屬溶出試驗 43
3.3.3 水中營養鹽吸附試驗 47
3.3.4 藻類培養試驗 49
3.3.5 現地研究概述 52
3.4 分析方法 55
第四章 結果與討論 59
4.1 脫硫渣細料基本特性分析 59
4.1.1 成分分析 59
4.1.2 晶相組成分析 61
4.1.3 表面微觀結構分析 62
4.1.4 比表面積分析 65
4.1.5 pH及鹼度釋出試驗 67
4.2 重金屬溶出試驗 68
4.2.1 毒性特性溶出試驗 68
4.2.2 無機成分可溶出量試驗 69
4.2.3 多重化學藥劑連續萃取法 70
4.3 營養鹽吸附試驗 73
4.3.1 動力吸附模式 75
4.3.2 等溫吸附模式 79
4.3.3 吸附熱力學之探討 85
4.4 藻類培養 86
4.4.1 pH值變化 86
4.4.2 藻濃度 87
4.4.3 微量元素 88
4.4.4 有機物參數分析 90
4.5 現地研究 98
4.5.1 水質分析結果 98
4.5.2 水中有機物特性分析結果 99
4.5.3 水中藻類觀測結果 100
4.5.4 周遭土壤重金屬含量分析結果 101
第五章 結論與建議 103
5.1 結論 103
5.2 建議 104
參考文獻 105

參考文獻 References
中國鋼鐵股份有限公司,1999,爐石利用推廣手冊,中鋼公司工安環保處。
中國鋼鐵股份有限公司,2005,中鋼公司轉爐石之長期穩定性與環境相容性探討,期末報告。
中國鋼鐵股份有限公司,2005,爐石利用推廣手冊。
中國鋼鐵股份有限公司,2010,中鋼企業社會責任報告書。
王明光、王敏昭,2003,實用儀器分析,國立編譯館。
王昱智,2008,CFB副產石灰為混凝土膠結材料之配比與特性研究,國立中央大學土木研究所碩士論文。
王瑋智,2009,以不同次氯酸鈉濃度改質多壁奈米碳管之吸附能力比較-以銅為例,國立暨南國際大學土木工程學系碩士論文。
石武航,2008,活性碳吸附結合過硫酸鹽氧化三氯乙烯污染物之可行性評估,國立中興大學環境工程研究所碩士論文。
吳佩玲、陳昌佑、葉秀貞,2009,不同溫度影響廢棄茶葉渣吸附水中氨氮之研究,第四屆資源工程研討會論文集,第158-163頁。
吳映潔,2010,CNTs/TiO2奈米複合材料去除水中鉻金屬可行性之研究,國立暨南國際大學土木工程學系碩士論文。
李佳芳、葉信利,2008,為水產養殖永續生產之氮移除技術,水試專訊,第23期,第23-25頁。
李芳胤、陳士賢,2007,土壤分析實驗手冊,新文京開發出版股份有限公司。
周廷耀,2003,碳源的添加對等鞭金藻增殖的影響,國立中山大學海洋生物研究所碩士論文。
林平全、張東源、林志棟,2006,轉爐石於鋪面工程之應用,中國土木水利工程學刊,第3期,第103-115頁。
林育彰,2009,藻體胞外有機物特性之研究,國立成功大學環境工程學系碩士論文。
林坤信,2009,水道式養殖螺旋藻對煙氣中二氧化碳之利用與藻水中有機物成分之分析,大仁技術學院環境管理研究所碩士論文。
林勝彥,2006,轉爐石回脹行為及其顯微結構特性,國立高雄應用科技大學土木工程暨防災科技研究所碩士論文。
邵功賢,2008,都市污水產製藻類生質量之研究-以內湖污水廠為例,國立臺灣大學工學院環境工程學研究所碩士論文。
洪偉哲,2011,以組合式薄膜技術處理受三氯乙烯污染之地下水,國立中山大學環境工程研究所碩士論文。
張志文,2006,藻相之顯微鏡照像及其萃出液之螢光光譜圖特性分析,大仁技術學院環境管理研究所碩士論文。
張育禎,2010,以加強式過硫酸鹽氧化系統處理受甲基第三丁基醚污染之地下水,國立暨南國際大學土木工程學系碩士論文。
張信義,2004,煉鋼爐石去除水中砷及磷之研究,國立屏東科技大學環境工程與科學系碩士論文。
張高僑,2008,鈣系爐渣封存二氧化碳行為之研究,國立成功大學環境工程學系碩士論文。
許藝騰,2011,以奈米級零價鐵處理實廠含鉻電鍍廢水之研究,國立暨南國際大學土木工程學系碩士論文。
郭文田、翁明偉,2009,利用脫硫渣與水淬爐石產製無卜特蘭水泥控制性低強度材料,中正嶺學報,第1期,第157-166頁。
郭育宗,2009,轉爐石去除河水中磷之探討,國立屏東科技大學環境工程與科學系碩士論文。
郭奇木,2011,煆燒後混凝污泥對水中氨氮吸附效能之評估,武夷學院環境與建築工程系畢業論文。
郭炯煇,2006,中鋼爐渣工程性質之研討,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
陳威豪,2004,界面活性劑對含銅重金屬污泥結合型態與去除效率之探討,國立成功大學環境工程學系碩士論文。
陳威錦,2010,應用熱重分析技術探討加硫改質活性碳吸附氣相氯化汞之吸附效能與吸(脫)附動力模式,國立中山大學環境工程研究所碩士論文。
陳彥宏,2007,不同藻類釋出有機物及其萃取色素性質之差異,大仁技術學院環境管理研究所碩士論文。
陳美伶,2011,鎳鐵氧磁體及脫硫渣誘導H2O2處理反應黑染料之研究,國立成功大學環境工程學系碩士論文。
彭于華,2009,探討以淡水藻類固定二氧化碳之生長條件,國立屏東科技大學環境工程與科學系碩士論文。
黃兆龍,1986,高爐熟料及飛灰材料在混凝土工程上之應用,高爐石與飛灰資源在混凝土工程上應用研討會。
黃毓涵,2009,小球藻最適化連續式培養之研究,國立成功大學化學工程學系碩士論文。
黃靖云,2008,不同養護條件對都市垃圾焚化底渣中重金屬溶出特性之影響,嘉南藥理科技大學環境工程與科學系碩士論文。
經濟部,2006,土壤及地下水污染預防與整治技術手冊(鋼鐵冶煉業),經濟部工業局。
廖秋榮,2008,農路鋪設中鋼公司轉爐石之環境相容性評估,轉爐石應用與管理研討會暨圓桌會議,第144-152頁。
蔡在唐、高志明、陳俊廷,2009,應用爐石催化現地化學氧化以整治土壤及地下水污染,工業污染防治季刊,第111期,第75-104頁。
蔡敏行,2001,鋼鐵爐渣應用於海洋生態保育-日本爐渣應用概況介紹,簡報資料。
鍾濬鴻,2008,化學法增強木質纖維質對水中重金屬離子吸附能力之研究,嘉南藥理科技大學環境工程與科學系碩士論文。
蘇明德,2008,化學動力學觀念與1000題,五南。
Agrawal, S.G., King, K.W., Fischer, E.N., Woner, D.N., (2011). PO43- removal by and permeability of industrial byproducts and minerals: granulated blast furnace slag, cement kiln dust, coconut shell activated carbon, silica sand, and zeolite, Water, Air, and Soil Pollution, 219, pp.91-101.
Álvarez-Valero, A.M., Sáez, R., Pérez-López, R., Delgado, J., Nieto, J.M., (2009). Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam (Iberian Pyrite Belt, SW Spain) based on a sequential extraction procedure, Journal of Geochemical Exploration, 102, pp.87-94.
Becker, E.W., (1994). Microalgae: biotechnology and microbiology, Cambridge University, New York, USA.
Bernardo, M., Lapa, N., Gonçalves, M., Barbosa, R., Mendes, B., Pinto, F., Gulyurtlu, I., (2010). Toxicity of char residues produced in the co-pyrolysis of different wastes, Waste Management, 30, pp.628-635.
Bhatnagar, A., (2007). Removal of bromophenols from water using industrial wastes as low cost adsorbents, Journal of Hazardous Materials, 139, pp.93-102.
Bruchet, A., Rousseau, C., Mallevialle, J., (1990). Pyrolysis-GC-MS for investigating high-molecular-weight THM precursors and other refractory organics, Journal-American Water Works Association, 82, pp.66-74.
Cha, W., Kim, J., Choi, H., (2006). Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment, Water Research, 40, pp.1034-1042.
Chen, S., Wang, Z., Cao, X., (2010). Research on the motivation trend of typical trace elements on algae bloom, Journal of South China Normal University, 2, pp.82-89.
Chen, T., Zheng, W., Wong, Y.S., Yang, F., Bai, Y., (2006). Accumulation of selenium in mixotrophic culture of Spirulina platensis on glucose, Bioresource Technology, 97, pp.2260-2265.
Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environmental Science and Technology, 37, pp.5701-5710.
Chiang, C.M., (2007). Evaluation manual for green building material, Architecture and Building Research Institute, Ministry of The Interior, R.O.C., Taipei.
Choudhary, M., Jetley, U.K., Khan, M.A., Zutshi, S., Fatma, T., (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5, Ecotoxicology and Environmental Safety, 66, pp.204-209.
Coble, P.G., (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy, Marine Chemistry, 51, pp.325-346.
Corrochano, B.G., Azcarate, J.A., Gonzalez, M.R., (2011). Heavy metal chemical fractionation and immobilization in lightweight aggregates produced from mining and industrial waste, International Journal of Environmental Science and Technology, 8, pp.667-676.
Decho, A.W., Herndl, G.J., (1995). Microbial activities and the transformation of organic matter within mucilaginous material, Science of The Total Environment, 165, pp.33-42.
Determann, S., Lobbes, J.M., Reuter, R., Rullkötter, J., (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria, Marine Chemistry, 62, pp.137-156.
Dimitrova, S.V., (2002). Use of granular slag columns for lead removal, Water Research, 36, pp.4001-4008.
Drizo, A., Cummings J., Weber, D., Twohig, E., Druschel, G., Bourke, B., (2008). New evidence for rejuvenation of phosphorus retention capacity in EAF steel slag, Environmental Science and Technology, 42, pp.6191-6197.
Eullaffroy, P., Vernet, G., (2003). The F684/F735 Chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae, Water Research, 37, pp.1983-1990.
Fan, H.J., Shu, H.Y., Yang, H.S., Chen, W.C., (2006). Characteristics of landfill leachates in central Taiwan, Science of The Total Environment, 361, pp.25-37.
Gupta, V.K., Rastogi, A., Nayak, A., (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models, Journal of Colloid and Interface Science, 342, pp.533-539.
Habbaba, A., Plank, J., (2012). Surface chemistry of ground granulated blast furnace slag in cement pore solution and its impact on the effectiveness of polycarboxylate superplasticizers, Journal of the American Ceramic Society, 95, pp.768-775.
Hedström, A., Rastas, L., (2006). Methodological aspects of using blast furnace slag for waste-water phosphorus removal, Journal of Environmental Engineering, 132, pp.1431-1438.
Her, N., Amy, G., McKnight, D., Sohn, J., Yoon, Y., (2003). Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection, Water Research, 37, pp.4295-4303.
Her, N., Amy, G., Park, H.R., Song, M., (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling, Water Research, 38, pp.1427-1438.
Hsu, J.H., Lo, S.L., (2001). Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure, Environmental Pollution, 114, pp.119-127.
Huaiwei, Z., Xin, H., (2011). An overview for the utilization of wastes from stainless steel industries, Resources, Conservation and Recycling, 55, pp.745-754.
Hudson, N., Baker, A., Reynolds, D., (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review, River Research and Applications, 23, pp.631-649.
Huijgen, W.J.J., Witkamp, G.J., Comans, R.N.J., (2005). Mineral CO2 sequestration by steel slag carbonation, Environmental Science and Technology, 39, pp.9676-9682.
Jha, V.K., Kameshima, Y., Nakajima, A., Okada, K., (2004). Hazardous ions uptake behavior of thermally activated steel-making slag, Journal of Hazardous Materials, 114, pp.139-144.
Jha, V.K., Kameshima, Y., Nakajima, A., Okada, K., (2008). Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution, Journal of Hazardous Materials, 156, pp.156-162.
Johansson, L., (1999a). Industrial by-products and natural substrata as phosphorus sorbents, Environmental Technology, 20, pp.309-316.
Johansson, L., (1999b). Blast furnace slag as phosphorus sorbents-column studies, Science of the Total Environment, 229, pp.89-97.
Johansson, L., Gustafsson, J.P., (2000). Phosphate removal using blast furnace slags and opoka-mechanisms, Water Research, 34, pp.259-265.
Kanel, S.R., Choi, H., Kim, J.Y., Vigneswaran, S., Shim, W.G., (2006). Removal of arsenic(III) from groundwater using low-cost industrial by-products-blast furnace slag, Water Quality Research Journal of Canada, 41, pp.130-139.
Kawatra, S.K., Ripke, S.J., (2002). Pelletizing steel mill desulfurization slag, International Journal of Mineral Processing, 65, pp.165-175.
Kim, J.W., Jung, M.C., (2011). Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag, Environmental Geochemistry and Health, 33, pp.151-158.
Kim, Y.J., Lee, B.K., Hwang, H.W., Qureshi, T.I., (2010). Comparative study on the leaching characteristics of industrial sludge and fly ash using KSLP and TCLP techniques, Journal of the Chemical Society of Pakistan, 32, pp.638-643.
Korkusuz, E.A., Beklioğlu, M., Demirer, G.N., (2007). Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application, Bioresource Technology, 98, pp.2089-2101.
Kuo, W.T., Hou, T.C., Pan, H.H., (2010). Desulfurization slag/granulated blast furnace slag binder and mortar without portland cement, The 4th Asian Concrete Federation International Conference, Taipei.
Lee, S.H., Vigneswaran, S., Moon, H., (1997). Adsorption of phosphorus in saturated slag media columns, Separation and Purification Technology, 12, pp.109-118.
Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y., (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Research, 39, pp.605-609.
Lim, S.L., Chu, W.L., Phang, S.M., (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater, Bioresource Technology, 101, pp.7314-7322.
Liu Z. Y., Wang, G.C., Zhou, B.C., (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresource Technology, 99, pp.4717-4722.
Maiz, I., Arambarri, I., Garcia, R., Millán, E., (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis, Environmental Pollution, 110, pp.3-9.
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., Anderson, D.T., (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity, Limnology and Oceanography, 46, pp.38-48.
Mohan, N., Rao, P.H., Kumar, R.R., Sivasankaran, S., Sivasubramanian, V., (2009). Studies on mass cultivation of Chlorella vulgaris and effective harvesting of bio-mass by low-cost methods, Journal of Algal Biomass Utilization, 1, pp.29-39.
Mohd Din, A.T., Hameed, B.H., Ahmad, A.L., (2009). Batch adsorption of phenol onto physiochemical-activated coconut shell, Journal of Hazardous Materials, 161, pp.1522-1529.
Morel, F.M.M., Hudson, R.J.M., Price, N.M., (1991). Limitation of productivity by trace metals in the sea, Limnology and Oceanography, 36, pp.1742-1755.
Nehrenheim, E., Gustafsson, J.P., (2008). Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments, Bioresource Technology, 99, pp.1571-1577.
Nehrenheim, E., Rodriguez Caballero, A., Odlare, M., Johansson Westholm, L., (2009). Waste-water phosphorus removal by blast furnace slag: Laboratory and field investigations in Sweden, In Proceedings of 3rd Decentralised Conference on Water and Wastewater International Network, Kathmandu, Nepal, pp.10-13.
Nishijima, W., Speitel, G.E., (2004). Fate of biodegradable dissolved organic carbon produced by ozonation on biological activated carbon, Chemosphere, 56, pp.113-119.
Oguz E., (2005). Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag, Journal of Colloid and Interface Science, 281, pp.62-67.
Ortiz, N., Pires, M.A.F., Bressiani, J.C., (2001). Use of steel converter slag as nickel adsorber to wastewater treatment, Waste Management, 21, pp.631-635.
Owen, D.M., Amy, G.L., Chowdhury, Z.K., (1993). Characterization of natural organic matter and its relationship to treatability, American Water Works Association Research Foundation, Denver, CO, USA.
Oyeyiola, A.O., Olayinka, K.O., Alo, B.I., (2011). Comparison of three sequential extraction protocols for the fractionation of potentially toxic metals in coastal sediments, Environmental Monitoring And Assessment, 172, pp.319-327.
Park, J., Jin, H.F., Lim, B.R., Park, K.Y., Lee, K., (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp., Bioresource Technology, 101, pp.8649-8657.
Passos, E.D., Alves, J.C., dos Santos, I.S., Alves, J.D.H., Garcia, C.A.B., Costa, A.C.S., (2010). Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis, Microchemical Journal, 96, pp.50-57.
Pinto, A.M.F., Von Sperling, E., Moreira, R.M., (2001). Chlorophy-a determination via continuous measurement of plankton fluorescence: methodolgy development, Water Research, 35, pp.3977-3981.
Ramana, D.K.V., Reddy, D.H.K., Kumar, B.N., Harinath, Y., Seshaiah, K., (2012). Removal of nickel from aqueous solutions by citric acid modified Ceiba pentandra hulls: Equilibrium and kinetic studies, Canadian Journal of Chemical Engineering, 90, pp.111-119.
Rastas Amofah, L., Hanaeus, J., (2006). Nutrient recovery in a small scale wastewater treatment plant in cold climate, Vatten, 62, pp.355-368.
Rocha, J.M.S., Garcia, J.E.C., Henriques, M.H.F., (2003). Growth aspects of the marine microalga Nannochloropsis gaditana, Biomolecular Engineering, 20, pp.237-242.
Roden, E.E., Zachara, J.M., (1996). Microbial reduction of crystalline iron (III) oxides: influence of oxide surface area and potential for cell growth, Environmental Science and Technology, 30, pp.1618-1628.
Ruthven, D.M., (1984). Principles of adsorption and adsorption processes, John Wiley and Sons, New York, USA.
Sahuquillo, A., Rigol, A., Rauret, G., (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments, Trac-Trends In Analytical Chemistry, 22, pp.152-159.
Scancar, J., Milacic, R., Strazar, M., Burica, O., (2000). Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge, Science of the Total Environment, 250, pp.9-19.
Sheng, G., Li, Q., Zhai, J., Li, F., (2007). Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke, Cement and Concrete Research, 37, pp.871-876.
Shih, H.C., Ma, H.W., (2011). Assessing the health risk of reuse of bottom ash in road paving, Chemosphere, 82, pp.1556-1562.
Stevenson, F.J., (1994). Humus Chemistry: Genesis, Composition, Reactions, John Wiley and Sons, New York, USA.
Suffet, I. H., McGuire, M. J., (1980). Activated carbon adsorption of organics from the aqueous phase, vol. 1, Ann Arbor, Michigan, USA.
Sun, L., Chen, S., Chao, L., Sun, T., (2007). Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil, Bulletin of Environmental Contamination and Toxicology, 79, pp.514-518.
Suzuki, Y., Yamaguchi, Y., Suzuki, S., Hirata, S., Aihara, M., Hiraki, H., (2001). Characteristics of aquatic humic substances in natural waters by synchronous and derivative synchronous fluorescence spectrum, Analytical Sciences, 17, pp.1605-1608.
Tessier, A., Campbell, P.G.C., Bisson, M., (1979). Sequential extraction procedure for the speciation of particulate trace metals, Analytical Chemistry, 51, pp.844-851.
Tokalioglu, S., Kartal, S., Elci, L., (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic adsorption spectrometry after a four-stage sequential extraction procedures. Analytica Chimica Acta, 413, pp.33-40.
Tsai, C.T., (2012). Cold-bonding technique-a new approach to recycle innocuous construction residual soil, sludge, and sediment as coarse aggregates, Sintering of Ceramics-New Emerging Techniques, Rijeka, Croatia.
Van der Sloot, H.A., (1996). Developments in evaluating environment impact from utilization of bulk inert wastes using laboratory leaching tests and field verification, Waste Management, 16, pp.65-81.
Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., Ruan, R.R., (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp., Bioresource Technology, 101, pp.2623-2628.
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R., (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Applied Biochemistry and Biotechnology, 162, pp.1174-1186.
Wang, S., Yang, J., Lou, S.J., (2010). Wastewater treatment performance of a vermifilter enhancement by a converter slag-coal cinder filter, Ecological Engineering, 36, pp.489-494.
Wei , K., Yang, Y., (2012). Adsorption kinetics and isotherms of Cu (II) and Cd (II) onto oxidized nano carbon black, Advanced Materials Research, 529, pp.579-584.
Westholm, L.J., (2006). Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment, Water Research, 40, pp.23-36.
Westholm, L.J., (2010). The use of blast furnace slag for removal of phosphorus from wastewater in Sweden-A review, Water, 2, pp.826-837.
Xue, Y., Hou, H., Zhu, S., (2009a). Competitive adsorption of copper (II), cadmium (II), lead (II) and zinc (II) onto basic oxygen furnace slag, Journal of Hazardous Materials, 162, pp.391-401.
Xue, Y., Hou, H., Zhu, S., (2009b). Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study, Chemical Engineering Journal, 147, pp.272-279.
Yang, J., Wang, S., Lu, Z.B., Yang, J., Lou, S.J., (2009). Converter slag-coal cinder columns for the removal of phosphorous and other pollutants, Journal of Hazardous Materials, 168, pp.331-337.
Zhao, Q.Z., Stark, J., Freyburg, E., Zhou, M.K., (2012). Steam and autoclave treatments on structure characteristics of steel slag, Advanced Materials Research, 356-360, pp.1919-1927.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.172.252
論文開放下載的時間是 校外不公開

Your IP address is 18.223.172.252
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code