Responsive image
博碩士論文 etd-0824115-212900 詳細資訊
Title page for etd-0824115-212900
論文名稱
Title
以聚麩胺酸為清洗劑進行環境復育之成效評估
Using poly-glutamic acid as soil washing agent to evaluate its effectiveness on environmental restoration
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-28
繳交日期
Date of Submission
2015-09-27
關鍵字
Keywords
聚麩胺酸、重金屬、土壤清洗、螯合作用、土壤pH
soil pH, chelation, soil washing, heavy metals, poly-γ-glutamic acid
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
重金屬污染土壤及地下水(以下簡稱土水)一直是全球關注的問題。由於重金屬污染物無法藉由生物或化學性的反應來破壞其結構,因此當重金屬污染物洩漏後,將會逐漸地累積於土壤中,形成對人體健康有危害潛勢之環境。土壤清洗(soil washing)是一種可有效去除土壤中重金屬之技術,其係利用化學萃取劑、界面活性劑(surfactant)、螯合劑(chelating agent)或是酸/鹼性溶液(acid/base solution)等作為清洗劑(washing agent),進行土壤中重金屬之萃取。然而常使用之清洗劑如乙二胺四乙酸(ethylenediaminetetraacetic acid, EDTA)、鹽酸(hydrogen chloride, HCl)或檸檬酸(citric acid)等,常因本身物理化學之特性難被生物所分解,故用於土壤清洗易形成二次污染;因清洗劑與金屬產生之金屬-清洗劑錯合物(metal-agent complex)具有毒性,而對土壤中微生物生態造成影響;因酸/鹼特性而嚴重改變清洗後之土壤環境pH以及重金屬於土壤中之型態,使清洗後土壤地力難以回復等問題。因此,尋找能被生物分解且對重金屬具有強大螯合能力之清洗劑是當前所面臨的課題。
聚麩胺酸(poly-dlutamic acid, γ-PGA)為一種生物高分子聚合物,其是由納豆菌(Bacillus species)經固態或液態發酵作用聚合而成,擁有3種官能基(α-NH3、α-COOH與γ-COOH),因此具有強大可鍵結金屬之能力。本研究以3種聚麩胺酸(RB, NHP, NLP)為清洗劑,針對台灣某受重金屬污染之農地(污染濃度Cr: 508 mg/kg, Ni: 596 mg/kg, Cu: 323 mg/kg, Zn: 1,470 mg/kg)進行清洗處理,並探討聚麩氨酸去除重金屬之效率與機制,評估以聚麩胺酸為清洗液之最佳清洗條件。
試驗結果顯示,聚麩胺酸之最佳清洗條件為清洗劑濃度200 mM、清洗時間60 min、水土比為20:1、中性pH條件。在此條件下,RB可有效去除土壤中Cr 29.6%、Ni 27.15%、Cu 44.6%以及Zn 42.6%。NHP與NLP在此條件下之處理效率則較差於RB,對各金屬之去除率僅為30%以下。此外,當RB之pH < 6時,將對土壤中金屬產生質子化作用,使土壤中金屬溶解而使去除率上升。各金屬之去除率可在pH 1時提升為Cr 46.5%、Ni 50.9%、Cu 60.3%以及Zn 81.8%。然而當RB在pH > 6狀態下,由於RB本身結構會完全展開,令更多羧基(α-COOH)解離形成可鍵結金屬之配位體(ligand),因此在高pH條件下仍可有效去除重金屬。另外連續清洗試驗結果顯示,當清洗1次後,土壤中Cu可達法規標準(殘留濃度為184 mg/kg);連續清洗2次後,土壤中Zn可達法規標準(殘留濃度為506 mg/kg);連續清洗6次後,Cr及Ni可達將近法規標準(殘留濃度各為268 mg/kg與277 mg/kg)。最後的金屬形態分析結果亦顯示了土壤經聚麩胺酸清洗後,交換態金屬分佈無增加趨勢,此表示清洗後殘留於土壤中之金屬的移動性未增加,不易形成二次污染。而清洗後殘留於土壤中之有機物鍵結態的金屬分佈減少,顯示RB具有與有機物競爭鍵結之能力。綜合本研究之試驗結果顯示,RB具有強大對重金屬之螯合能力,可有效去除土壤中Cr、Ni、Cu、Zn等金屬,且RB為生物可分解材料,清洗後無土壤二次污染問題,對地力之回復具有相當之優勢,因此適合將其運用於現場土壤整治作業。
Abstract
Heavy-metal contaminated soils and groundwater are world-wide environmental problems. Because heavy metals cannot be destroyed or undergo microbial or chemical degradation, the total amounts of heavy metals would persist in the subsurface environments for a long period of time after their subsurface introduction. Heavy metals have toxic effect for humans due to their toxic accumulation. The toxic effect of a metal depends mainly on its ligands and its oxidation state, which frequently determine the bio-availability. Thus, metal polluted soils or groundwater must be remediated to decrease their risks to human health and ecosystem. Soil washing technology is one of available remediation methods to remove heavy metals from environmental media using chemical extraction reagents, chelating agents, or acid solutions. However, a limitation of soil washing, especially in the case of large contaminated sites, are the cost as a result of the use of reagents and treatment of huge amounts of wastewater and the nonbiodegradable of washing agent.
Poly-γ-glutamic acid (γ-PGA), an edible and biodegradable biopolymer, is synthesized extracellularly by Bacillus species by either the de nova method in solid state fermentation or the salvage bioconversion pathway in submerged fermentation. γ-PGA is made of D- and L-glutamic acid units connected by amide linkages between α-amino and γ-carboxylic acid groups. It exhibits high water-absorbablity, pH-responsivity and chelating ability. Therefore, γ-PGA shows great promise for a wide range of applications, especially in biomaterials and environmental fields.
Compared to commonly used soil washing reagents (e.g., ethylene diaminetetra acetic acid (EDTA), EDTA derivatives), γ-PGA would be an environmentally acceptable washing reagent, which can be used as an alternative for other non-biodegradable reagent such as EDTA. The objective of this study was to use γ-PGA as a selective soil washing agent to remove heavy metals in soil and assess the best washing condition of PGA to have maximum metal removal efficiency.
In this study, bench-scale soil washing experiments were performed. Three different PGA (RB, NHP, and NLP) were applied as washing agents in this study. The studied controlling factors included washing agent concentrations, washing time, liquid-to-soil ratio, pH value, and washing frequency. Soils collected from a former electroplating factory were contaminated by four different heavy metals (with concentrations of Cr 508 mg/kg, Ni 596 mg/kg, Cu 323 mg/kg, and Zn 1,470 mg/kg). The heavy metal concentrations were analyzed using an inductively coupled plasma-atomic emission spectrometer (ICP-AES Optima 7000DV, PerkinElmer, USA).
Results show that the optimal operational conditions of heavy metal removal efficiency could be obtained with washing agent of 200 mM, washing time of 60 min, liquid-to-soil ratio of 20:1, and natural pH. Up to 29.6%, 27.2%, 44.6%, and 42.6% of Cr, Ni, Cu, and Zn could be removed by RB under the optimal operational conditions. When pH decreased from 6 to 1, RB could promo the protonation of heavy metal in soil, and thus, the heavy metal removal efficiency was increased from 25.0% to 46.5% for Cr, 30.6% to 50.9% for Ni, 43.9% to 60.3% for Cu, and 71.2% to 81.8% for Zn. When pH reached 6 or higher, RB still had high removal efficiency for target metals due to all hydrogen-bonding disappeared, and insoluble α-helix conformation of γ-PGA transformed into soluble linear random-coil conformation, and all carboxyl groups changed into free pendant anionic groups. The results of washing frequency batch experiments showed that Cr and Ni in soil needed more than 6 times of washing process to achieve the soil regulation value. The Cu and Zn in soil needed 1 and 2 washing times of process to achieve the soil regulation value, respectively. Results from heavy metal species evaluation show that RB would compete with organically bound species of heavy metals because the percentage of organically bound species of heavy metals were decreased after RB washing process. In this study, results demonstrate that γ-PGA is a potential washing reagent, which is able to remediate heavy-metal contaminated soils and groundwater efficiently and effectively. Results from this study will be useful in designing a scale-up remediation system for field application.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖次 ix
表次 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 重金屬污染物 3
2.1.1 重金屬污染慨況 3
2.1.2 重金屬污染來源 5
2.1.3 重金屬之基本特性與危害 6
2.2 重金屬污染物於土壤中之傳輸/宿命與分佈 11
2.2.1 重金屬於土壤中的質流與擴散 12
2.2.2 重金屬於土壤中的吸附與脫附 12
2.2.3 重金屬於土壤中的沉澱與溶解 13
2.2.4 重金屬於土壤中的氧化與還原 14
2.2.5 重金屬於土壤中的錯合 15
2.3 影響重金屬宿命之因素 17
2.3.1 Pearson軟硬酸鹼理論 17
2.3.2 Irving-William序列理論 18
2.3.3 其他影響重金屬宿命之因子 19
2.4重金屬污染土壤整治/復育技術 23
2.4.1 物理處理技術 24
2.4.2 化學處理技術 25
2.4.3 生物處理技術 29
2.5 土壤清洗技術 32
2.6 聚麩胺酸 35
2.6.1 聚麩胺酸基本性質 35
2.6.2 聚麩胺酸於環境上的應用 36
2.6.3 聚麩胺酸對金屬之機制 37
第三章 實驗材料與方法 41
3.1 研究流程 41
3.2 實驗材料與設備 43
3.2.1 實驗材料 43
3.2.2 實驗設備 43
3.3 聚麩胺酸來源與基本特性 44
3.4 試驗土壤來源與基本特性 45
3.4.1 試驗土壤採樣 45
3.4.2 土壤基本特性分析 46
3.5 聚麩胺酸清洗最佳條件試驗 48
3.5.1 不同清洗劑濃度對重金屬萃取影響試驗 48
3.5.2 不同清洗時間對重金屬萃取影響試驗 48
3.5.3 不同清洗劑水土比對重金屬萃取影響試驗 49
3.6 調整pH改善聚麩胺酸清洗效率試驗 49
3.7 以連續清洗方式改善聚麩胺酸清洗效率試驗 50
3.8 重金屬型態分佈探討 50
第四章 結果與討論 52
4.1 試驗土壤基本特性分析 52
4.2 聚麩胺酸萃取土壤重金屬最佳條件試驗 55
4.2.1 不同清洗劑濃度萃取土壤重金屬之影響 55
4.2.2 不同清洗劑萃取效率比較 62
4.2.3 不同清洗時間萃取土壤重金屬之影響 66
4.2.4 不同水土比萃取土壤重金屬之影響 70
4.3 以不同pH聚麩胺酸萃取土壤重金屬試驗 74
4.3.1 以不同pH之RB0001萃取土壤中Cr金屬 74
4.3.2以不同pH之RB0001萃取土壤中Ni金屬 75
4.3.3以不同pH之RB0001萃取土壤中Cu金屬 76
4.3.4以不同pH之RB0001萃取土壤中Zn金屬 78
4.4 以連續清洗方式改善聚麩胺酸清洗效率試驗 80
4.5 清洗後重金屬型態分佈探討 84
4.6 成本效益評估 88
第五章 結論與建議 90
5.1 結論 90
5.2 建議 91
參考文獻 92
附錄一、委員意見答覆表 102
附錄二、實驗數據QA/QC 105
附錄三、論文作者個人履歷 106
參考文獻 References
Ahmad, W., Najeeb, U. and Zia, M.H. (2015) Soil Remediation and Plants. Mermut, K.R.H.S.Ö.R. (ed), pp. 37-61, Academic Press, San Diego.
Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V. and Beolchini, F. (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. Journal of Cleaner Production 86(0), 24-36.
Anju, M. and Banerjee, D.K. (2010) Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 78(11), 1393-1402.
Asensio, V., Vega, F.A., Singh, B.R. and Covelo, E.F. (2013) Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Science of The Total Environment 443(0), 446-453.
Ashiuchi, M., Kamei, T. and Misono, H. (2003) Poly-γ-glutamate synthetase of Bacillus subtilis. Journal of Molecular Catalysis B: Enzymatic 23(2–6), 101-106.
Ashiuchi, M., Nawa, C., Kamei, T., Song, J.-J., Hong, S.-P., Sung, M.-H., Soda, K., Yagi, T. and Misono, H. (2001) Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry 268(20), 5321-5328.
Bajaj, I. and Singhal, R. (2011) Poly (glutamic acid) – An emerging biopolymer of commercial interest. Bioresource Technology 102(10), 5551-5561.
Begum, Z.A., Rahman, I.M.M., Tate, Y., Sawai, H., Maki, T. and Hasegawa, H. (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87(10), 1161-1170.
Bhattacharyya, D., Hestekin, J.A., Brushaber, P., Cullen, L., Bachas, L.G. and Sikdar, S.K. (1998) Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. Journal of Membrane Science 141(1), 121-135.
Bodnár, M., Kjøniksen, A.-L., Molnár, R.M., Hartmann, J.F., Daróczi, L., Nyström, B. and Borbély, J. (2008) Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions. Journal of Hazardous Materials 153(3), 1185-1192.
Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B. and Scheckel, K. (2014) Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials 266(0), 141-166.
Bolan, N.S., Adriano, D.C., Duraisamy, P., Mani, A. and Arulmozhiselvan, K. (2003) Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil 250(1), 83-94.
Carrillo Zenteno, M.D., de Freitas, R.C.A., Fernandes, R.B.A., Fontes, M.P.F. and Jordão, C.P. (2013) Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils. Water, Air, & Soil Pollution 224(2), 1-9.
Chang, J., Zhong, Z., Xu, H., Yao, Z. and Chen, R. (2013) Fabrication of Poly(γ-glutamic acid)-coated Fe3O4 Magnetic Nanoparticles and Their Application in Heavy Metal Removal. Chinese Journal of Chemical Engineering 21(11), 1244-1250.
Chen, M., Li, X.-m., Yang, Q., Zeng, G.-m., Zhang, Y., Liao, D.-x., Liu, J.-j., Hu, J.-m. and Guo, L. (2008) Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. Journal of Hazardous Materials 160(2–3), 324-329.
Daldoul, G., Souissi, R., Souissi, F., Jemmali, N. and Chakroun, H.K. (2015) Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. Journal of African Earth Sciences 110, 150-159.
Dermont, G., Bergeron, M., Mercier, G. and Richer-Laflèche, M. (2008) Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152(1), 1-31.
Devi, P. and Saroha, A.K. (2014) Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource Technology 162, 308-315.
Di Giuseppe, D., Vittori Antisari, L., Ferronato, C. and Bianchini, G. (2014) New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie der Erde - Geochemistry 74(4), 615-623.
Di Palma, L., Gueye, M.T. and Petrucci, E. (2015) Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron. Journal of Hazardous Materials 281(0), 70-76.
Dragović, R., Gajić, B., Dragović, S., Đorđević, M., Đorđević, M., Mihailović, N. and Onjia, A. (2014) Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia). Journal of Cleaner Production 84, 550-562.
Fdez-Ortiz de Vallejuelo, S., Gredilla, A., de Diego, A., Arana, G. and Madariaga, J.M. (2014) Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Science of The Total Environment 473–474, 359-371.
Guedes, P., Mateus, E.P., Couto, N., Rodríguez, Y. and Ribeiro, A.B. (2014) Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere 117, 124-131.
Guo, G., Zhou, Q. and Ma, L. (2006) Availability and Assessment of Fixing Additives for The in Situ Remediation of Heavy Metal Contaminated Soils: A Review. Environmental Monitoring and Assessment 116(1-3), 513-528.
Gusiatin, Z.M. (2014) Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation. Journal of Environmental Sciences 26(4), 855-864.
Gusiatin, Z.M. and Klimiuk, E. (2012) Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 86(4), 383-391.
Harrison, M.T. (2014) Vitrification of High Level Waste in the UK. Procedia Materials Science 7, 10-15.
Hellweg, S., Fischer, U., Hofstetter, T.B. and Hungerbühler, K. (2005) Site-dependent fate assessment in LCA: transport of heavy metals in soil. Journal of Cleaner Production 13(4), 341-361.
Ho, G.-H., Ho, T.-I., Hsieh, K.-H., Su, Y.-C., Lin, P.-Y., Yang, J., Yang, K.-H. and Yang, S.-C. (2006) γ-Polyglutamic Acid Produced by Bacillus Subtilis (Natto): Structural Characteristics, Chemical Properties and Biological Functionalities. Journal of the Chinese Chemical Society 53(6), 1363-1384.
Hong, C., Lee, D., Chung, D. and Kim, P. (2007) Liming Effects on Cadmium Stabilization in Upland Soil Affected by Gold Mining Activity. Archives of Environmental Contamination and Toxicology 52(4), 496-502.
Horváth, M., Halász, G., Kucanová, E., Kuciková, B., Fekete, I., Remeteiová, D., Heltai, G. and Flórián, K. (2013) Sequential extraction studies on aquatic sediment and biofilm samples for the assessment of heavy metal mobility. Microchemical Journal 107(0), 121-125.
Huguenot, D., Mousset, E., van Hullebusch, E.D. and Oturan, M.A. (2015) Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons. Journal of Environmental Management 153, 40-47.
Inbaraj, B.S., Chien, J.T., Ho, G.H., Yang, J. and Chen, B.H. (2006) Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid). Biochemical Engineering Journal 31(3), 204-215.
Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y. and Chen, B.H. (2009) Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid). Bioresource Technology 100(1), 200-207.
Irving, H. and Williams, R.J.P. (1953) 637. The stability of transition-metal complexes. Journal of the Chemical Society (Resumed) (0), 3192-3210.
Jacques, D., Šimůnek, J., Mallants, D. and van Genuchten, M.T. (2008) Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3–4), 449-461.
Jamali, M.K., Kazi, T.G., Arain, M.B., Afridi, H.I., Jalbani, N., Kandhro, G.A., Shah, A.Q. and Baig, J.A. (2009) Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure. Journal of Hazardous Materials 163(2–3), 1157-1164.
Järup, L. (2003) Hazards of heavy metal contamination. British Medical Bulletin 68(1), 167-182.
Jelusic, M., Vodnik, D. and Lestan, D. (2014) Revitalization of EDTA-remediated soil by fertilization and soil amendments. Ecological Engineering 73(0), 429-438.
Jho, E.H., Im, J., Yang, K., Kim, Y.-J. and Nam, K. (2015) Changes in soil toxicity by phosphate-aided soil washing: Effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere 119(0), 1399-1405.
Kashiwakura, S., Ohno, H., Matsubae-Yokoyama, K., Kumagai, Y., Kubo, H. and Nagasaka, T. (2010) Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent. Journal of Hazardous Materials 181(1–3), 419-425.
Kumar, R. and Pal, P. (2015) Fermentative production of poly (γ-glutamic acid) from renewable carbon source and downstream purification through a continuous membrane-integrated hybrid process. Bioresource Technology 177(0), 141-148.
Kuo, S., Lai, M.S. and Lin, C.W. (2006) Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environmental Pollution 144(3), 918-925.
Lee, P.-K., Choi, B.-Y. and Kang, M.-J. (2015) Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk. Chemosphere 119, 1411-1421.
Leleyter, L., Rousseau, C., Biree, L. and Baraud, F. (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. Journal of Geochemical Exploration 116–117(0), 51-59.
Leštan, D., Luo, C.-l. and Li, X.-d. (2008) The use of chelating agents in the remediation of metal-contaminated soils: A review. Environmental Pollution 153(1), 3-13.
Li, H., Wang, J., Teng, Y. and Wang, Z. (2006) Study on the mechanism of transport of heavy metals in soil in western suburb of Beijing. Chinese Journal of Geochemistry 25(2), 173-177.
Li, Z., Feng, X., Bi, X., Li, G., Lin, Y. and Sun, G. (2014) Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China. Environmental Science and Pollution Research 21(6), 4149-4162.
Liu, C.-C. and Lin, Y.-C. (2013) Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge. Environmental Pollution 178(0), 97-101.
Luo, X.-s., Yu, S., Zhu, Y.-g. and Li, X.-d. (2012) Trace metal contamination in urban soils of China. Science of The Total Environment 421–422, 17-30.
Maity, J.P., Huang, Y.M., Hsu, C.-M., Wu, C.-I., Chen, C.-C., Li, C.-Y., Jean, J.-S., Chang, Y.-F. and Chen, C.-Y. (2013) Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment. Chemosphere 92(10), 1286-1293.
Malik, B., Pirzadah, T.B., Tahir, I., Dar, T.u.H. and Rehman, R.U. (2015) Soil Remediation and Plants. Mermut, K.R.H.S.Ö.R. (ed), pp. 131-146, Academic Press, San Diego.
Mark, S.S., Crusberg, T.C., DaCunha, C.M. and Iorio, A.A.D. (2006) A Heavy Metal Biotrap for Wastewater Remediation Using Poly-γ-Glutamic Acid. Biotechnology Progress 22(2), 523-531.
Mulligan, C.N., Yong, R.N. and Gibbs, B.F. (2001) Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 60(1–4), 371-380.
Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D. and Tiller, K.G. (1997) Cadmium Sorption and Transport in Variable Charge Soils: A Review. Journal of Environmental Quality 26(3), 602-617.
Navarro, A., Cardellach, E., Cañadas, I. and Rodríguez, J. (2013) Solar thermal vitrification of mining contaminated soils. International Journal of Mineral Processing 119, 65-74.
Nemati, K., Bakar, N.K.A., Abas, M.R. and Sobhanzadeh, E. (2011) Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials 192(1), 402-410.
Nezamzadeh-Ejhieh, A. and Kabiri-Samani, M. (2013) Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. Journal of Hazardous Materials 260(0), 339-349.
Ok, Y., Oh, S.-E., Ahmad, M., Hyun, S., Kim, K.-R., Moon, D., Lee, S., Lim, K., Jeon, W.-T. and Yang, J. (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences 61(6), 1301-1308.
Omar, N.A., Praveena, S.M., Aris, A.Z. and Hashim, Z. (2015) Health Risk Assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study. Food Chemistry 188, 46-50.
Pagnanelli, F., Moscardini, E., Giuliano, V. and Toro, L. (2004) Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution 132(2), 189-201.
Park, S.-B., Sakamoto, J., Sung, M.-H. and Uyama, H. (2014) pH-controlled degradation and thermal stability of a porous poly(γ-glutamic acid) monolith crosslinked with an oxazoline-functionalized polymer. Polymer Degradation and Stability 99(0), 99-104.
Parr, R.G. and Pearson, R.G. (1983) Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105(26), 7512-7516.
Pearson, R. (2005) Chemical hardness and density functional theory. Journal of Chemical Sciences 117(5), 369-377.
Peng, J.-f., Song, Y.-h., Yuan, P., Cui, X.-y. and Qiu, G.-l. (2009) The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials 161(2–3), 633-640.
Poo, H., Park, C., Kwak, M.-S., Choi, D.-Y., Hong, S.-P., Lee, I.-H., Lim, Y.T., Choi, Y.K., Bae, S.-R., Uyama, H., Kim, C.-J. and Sung, M.-H. (2010) New Biological Functions and Applications of High-Molecular-Mass Poly-γ-glutamic Acid. Chemistry & Biodiversity 7(6), 1555-1562.
Rosestolato, D., Bagatin, R. and Ferro, S. (2015) Electrokinetic remediation of soils polluted by heavy metals (mercury in particular). Chemical Engineering Journal 264, 16-23.
Sears, M.E. (2013) Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review. The Scientific World Journal 2013, 13.
Shih, I.-L. and Van, Y.-T. (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology 79(3), 207-225.
Siao, F.Y., Lu, J.F., Wang, J.S., Inbaraj, B.S. and Chen, B.H. (2009) In Vitro Binding of Heavy Metals by an Edible Biopolymer Poly(γ-glutamic acid). Journal of Agricultural and Food Chemistry 57(2), 777-784.
Sierra, C., Martínez-Blanco, D., Blanco, J.A. and Gallego, J.R. (2014) Optimisation of magnetic separation: A case study for soil washing at a heavy metals polluted site. Chemosphere 107(0), 290-296.
Sparks, D.L. (2003a) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 133-186, Academic Press, Burlington.
Sparks, D.L. (2003b) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 207-244, Academic Press, Burlington.
Sparks, D.L. (2003c) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 1-42, Academic Press, Burlington.
Sparks, D.L. (2003d) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 187-205, Academic Press, Burlington.
Sparks, D.L. (2003e) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 267-283, Academic Press, Burlington.
Sparks, D.L. (2003f) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 245-265, Academic Press, Burlington.
Sparks, D.L. (2003g) Environmental Soil Chemistry (Second Edition). Sparks, D.L. (ed), pp. 75-113, Academic Press, Burlington.
Stephen Inbaraj, B., Chiu, C.P., Ho, G.H., Yang, J. and Chen, B.H. (2006) Removal of cationic dyes from aqueous solution using an anionic poly-γ-glutamic acid-based adsorbent. Journal of Hazardous Materials 137(1), 226-234.
Sung, M.-H., Park, C., Kim, C.-J., Poo, H., Soda, K. and Ashiuchi, M. (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. The Chemical Record 5(6), 352-366.
Suzuki, T., Niinae, M., Koga, T., Akita, T., Ohta, M. and Choso, T. (2014) EDDS-enhanced electrokinetic remediation of heavy metal-contaminated clay soils under neutral pH conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 440, 145-150.
Tan, W., Liu, F., Feng, X., Huang, Q. and Li, X. (2005) Adsorption and redox reactions of heavy metals on Fe–Mn nodules from Chinese soils. Journal of Colloid and Interface Science 284(2), 600-605.
Tessier, A., Campbell, P.G.C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7), 844-851.
Thayer, J.S. and Brinckman, F.E. (1982) Advances in Organometallic Chemistry. Stone, F.G.A. and Robert, W. (eds), pp. 313-356, Academic Press.
Török, A., Gulyás, Z., Szalai, G., Kocsy, G. and Majdik, C. (2015) Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. Journal of Hazardous Materials 299, 371-378.
Torres, L.G., Lopez, R.B. and Beltran, M. (2012) Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing. Physics and Chemistry of the Earth, Parts A/B/C 37–39, 30-36.
Ullmann, A., Brauner, N., Vazana, S., Katz, Z., Goikhman, R., Seemann, B., Marom, H. and Gozin, M. (2013) New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials 260(0), 676-688.
Valliant, E.M., Romer, F., Wang, D., McPhail, D.S., Smith, M.E., Hanna, J.V. and Jones, J.R. (2013) Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomaterialia 9(8), 7662-7671.
Van Oosten, M.J. and Maggio, A. (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany 111, 135-146.
Wu, Q., Cui, Y., Li, Q. and Sun, J. (2015) Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. Journal of Hazardous Materials 283(0), 748-754.
Wuana, R.A. and Okieimen, F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology 2011, 20.
Xu, J., Bravo, A.G., Lagerkvist, A., Bertilsson, S., Sjöblom, R. and Kumpiene, J. (2015) Sources and remediation techniques for mercury contaminated soil. Environment International 74(0), 42-53.
Yang, J.-S., Kwon, M.J., Choi, J., Baek, K. and O’Loughlin, E.J. (2014) The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere 117, 79-86.
Yao, Z., Li, J., Xie, H. and Yu, C. (2012) Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environmental Sciences 16(0), 722-729.
Ye, M., Sun, M., Kengara, F.O., Wang, J., Ni, N., Wang, L., Song, Y., Yang, X., Li, H., Hu, F. and Jiang, X. (2014) Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. Journal of Environmental Sciences 26(8), 1661-1672.
Yeh, T.Y., Chou, C.C. and Pan, C.T. (2009) Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 249(1), 368-373.
Yeh, T.Y., Lin, C.L., Lin, C.F. and Chen, C.C. (2015) Chelator-enhanced phytoextraction of copper and zinc by sunflower, Chinese cabbage, cattails and reeds. International Journal of Environmental Science and Technology 12(1), 327-340.
Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F. and Zhang, G. (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution 159(1), 84-91.
Zhang, C., Yu, Z.-g., Zeng, G.-m., Jiang, M., Yang, Z.-z., Cui, F., Zhu, M.-y., Shen, L.-q. and Hu, L. (2014a) Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 73, 270-281.
Zhang, T., Liu, J.-M., Huang, X.-F., Xia, B., Su, C.-Y., Luo, G.-F., Xu, Y.-W., Wu, Y.-X., Mao, Z.-W. and Qiu, R.-L. (2013) Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives. Journal of Hazardous Materials 262(0), 464-471.
Zhang, T., Wei, H., Yang, X.-H., Xia, B., Liu, J.-M., Su, C.-Y. and Qiu, R.-L. (2014b) Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere 109(0), 1-6.
Zhong, X.-l., Zhou, S.-l., Zhu, Q. and Zhao, Q.-g. (2011) Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in Jiangsu Province, China. Journal of Hazardous Materials 198, 13-21.
Zhu, N.-m., Chen, M., Guo, X.-j., Hu, G.-q. and Yu, D. (2015) Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments. Journal of Hazardous Materials 286, 118-126.
Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X. and Cai, X. (2009) The study of operating variables in soil washing with EDTA. Environmental Pollution 157(1), 229-236.
吳佩玲 (2015) 以銅-氨錯離子吸光度探討聚麩胺酸移除水中銅離子之效果. 高雄師範大學物理學系碩士論文.
李炯源、郭孟怡 (2014) 聚麩胺酸與儲存對豆腐理化特性的影響. 輔仁民生學誌 20(1), 51-69.
林佩君 (2008) γ-聚麩胺酸對重金屬銅、鉛、鎘之吸附效果. 大葉大學生物產業科技學系碩士在職專班碩士論文.
陳文賢 (2007) 聚麩胺酸吸附於海砂之研究及應用于汞之清除. 靜宜大學應用化學研究所碩士論文.
陳勇志 (2011) 以天然棉絮交聯聚麩胺酸去除水中鐵離子. 高雄師範大學化學系碩士論文.
陳尊賢 (2003) 土壤污染管制標準規定之探討. 行政院環境保護署EPA-91-H103-02-150.
經濟部工業局 (2006) 重金屬土壤及地下水污染預防與整治技術手冊. 經濟部工業局.
蘇紹瑋、陳尊賢 (2008) 土壤清洗法整治重金屬污染土壤國內外最新研究與整治案例之回顧. 台灣土壤及地下水環境保護協會簡訊 27, 4-12.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.254.122
論文開放下載的時間是 校外不公開

Your IP address is 18.218.254.122
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code