Responsive image
博碩士論文 etd-0825103-151926 詳細資訊
Title page for etd-0825103-151926
論文名稱
Title
單噴流於靜止及旋轉通道內衝擊冷卻現象研究
Single Jet Impingement Cooling in a Stationary and Rotating Square Duct
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
185
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-23
繳交日期
Date of Submission
2003-08-25
關鍵字
Keywords
紊流、熱傳、旋轉、壁噴流、阻塊、橫風、內曲面、停滯點、離心力、邊界層、噴流、衝擊冷卻、渦輪葉片
Heat transfer, Concave surface, Jet, Turbine blade, Ribs, Impingement cooling, Crossflow, Turbulent flow, Wall jet, Stagnation point, Boundary layer, Rotation, Centrifugal force
統計
Statistics
本論文已被瀏覽 5663 次,被下載 2852
The thesis/dissertation has been browsed 5663 times, has been downloaded 2852 times.
中文摘要
摘 要

本文主要是以實驗方法探討衝擊冷卻(impingement cooling),以水和空氣噴流,衝擊在加熱的通道內平板,並加上橫風(crossflow)、曲面、旋轉及粗糙面等效應,來觀察其流場結構及熱傳現象。實驗主要參數為:噴嘴和衝擊面之距離z/d=5~11.4,雷諾數Rej=6500~26000,曲面半徑比(R/d)=150~∞,旋轉雷諾數ReΩ=0〜112000,橫風比M=0~2,壁邊熱通量為1430~12890W/m2。
實驗結果發現通道內具有衝擊冷卻效果,且雷諾數愈大,熱傳有增強趨勢,噴嘴與衝擊面之距離z/d為8.3時效果最佳。旋轉會產生離心力及科氏力,如果噴流方向與旋轉方向相同,通道旋轉將使噴流方向傾斜且偏離衝擊面(impingement surface),因而降低衝擊冷卻效果,若噴流方向與旋轉方向垂直,旋轉將有助噴流速度及正面衝擊作用,將使熱傳增強。此外粗糙面有增強流場擾動效果,當雷諾數為26000時,旋轉粗糙面比平滑面之紐塞數比值大約增強22%。至於內凹曲面之熱傳效應,發現在停滯點沒有明顯改變,但是下游壁流區因離心力加強流體與壁面之作用力,則有增強熱傳效果,另外橫風作用也會使得噴流傾斜,當橫風比M=2,平均紐塞數大約降低48%。於各種參數相同情況下,以水當冷卻流體熱傳紐塞數約空氣的4.2倍。
觀察流場量測邊界層厚度,得到層流發展為紊流之關係式,及局部區域之平均熱傳係數與各種參數變化之關係式。以期對燃氣輪機葉片的衝擊冷卻系統能夠有個整體認識,並提供合理的實驗數據,盼藉此做為葉片通道內衝擊冷卻的學理依據,並提昇我們對燃氣輪機葉片設計能力,期望在工業實際應用上有所助益。






Abstract
Abstract

The influence of rotating and cross flow effect on local heat transfer coefficient and flow visualization for a single confined air/water jet with jet-to-wall spacing from 5 to 11.4, jet Reynolds number from 6500 to 26000, rotational Reynolds number from 0 to 112000, curvature ratio from 150 to , ratio of crossflow massflux to jet mass flux from 0 to 2, and the heat flux from 1430 to 12890W/m2 were reported.
The local heat transfer coefficient for air/water along the surface is measured and the effect of the rotation, the jet-to-wall spacing, the surface curvature, local and average Nusselt number, are presented and discussed. Furthermore, flow visualization was made in the present study. Based on the experimental result, it is found that the rotation will induce the centrifugal and coriolis force. It also shows that the heat transfer response will be decreased when the impinging direction parallel to the rotating direction, and increased when impinging direction perpendicular to the rotating direction. Crossflow effect will make Nusselt number decrease to 48% when M=2. Moreover, the roughen surface will increase the heat transfer coefficient up to 22% due to the secondary flow. The flow visualization is used to observe the transition of laminar to turbulence flow and to calculate the boundary layer thickness.








目次 Table of Contents
目 錄
頁次
目錄 i
圖目錄 iv
表目錄 viii
符號說明 ix
論文摘要(中文) xiii
論文摘要(英文) xv

第一章 緒論
1-1 前言 1
1-2 背景與目的 2
1-3 文獻回顧 4
1-4 研究範圍 22

第二章 實驗設備 27
2-1 水噴流流場觀察與測量設備 27
2-2 測試區 28
2-3 流場觀察及照相 29
2-4 高壓空氣供應及壓力、流量控制系 30
2-5 溫度量測系統 31
2-6 旋轉及測試系統 32
2-7 橫風空氣供應及壓力、流量控制系統 33
2-8 衝擊面加熱及控制系統 33

第三章 實驗量測方法及步驟 45
3-1 實驗量測方法 45
3-1-1 水噴流之壁流區液面高度量測 45
3-1-2 流量量測 45
3-1-3 溫度量測 47
3-2 實驗步驟 48

第四章 實驗數據處理 54
4-1 熱傳係數 54
4-2 質量流率 56

第五章 結果與討論 57
5-1 水噴流流場觀測及熱傳性能分析 58
5-1-1 水力跳躍點(hydraulic jump point) 62
5-1-2 邊界層厚度 65
5-1-3 壁噴流平均速度 66
5-1-4 水噴流熱傳性能分析 67
5-2 空氣噴流流場觀察及熱傳性能分析 71
5-2-1 空氣噴流流場觀察分析 71
5-2-2 靜止平板空氣噴流熱傳效應分析 74
5-3 旋轉通道及空氣噴流熱傳效應分析 88
5-4 曲面通道之衝擊冷卻,曲率、粗糙面、旋轉及橫風
對衝擊熱傳導之影響 102
5-4-1 曲面效應及旋轉所造成熱傳影響 102
5-4-2 粗糙面對通道衝擊冷卻熱傳影響 105
5-4-3 橫風對通道衝擊冷卻熱傳導之影響 106

第六章 結論與建議 146
參考文獻 155
附錄:誤差分析 172







圖 目 錄
頁次
圖1.1 氣輪機葉片及冷卻通道示意圖 25
圖1.2 氣輪機葉片 26
圖2.1 水噴流實驗設備圖 35
圖2.2 平直面測試區詳細圖 36
圖2.3 平直面測試區照片(R/d=∞) 37
圖2.4 曲面測試區詳細圖 38
圖2.5 曲面測試區照片(R/d=150) 39
圖2.6 流場觀察照相設備圖 40
圖2.7 靜止通道衝擊冷卻實驗設備安裝圖 41
圖2.8 旋轉設備與控制系統 42
圖2.9 旋轉設備與控制系統照片 43
圖2.10 曲面測試區噴流與橫風控制及旋轉安裝圖 44
圖3.1 照相觀察流程圖 52
圖3.2 溫度量測流程圖 53
圖5.1 水噴流流場結構照片 (z/d=5) 110
圖5.2 水噴流流場結構照片 (z/d=10) 111
圖5.3 水噴流流場結構分析圖 112

圖5.4 流量及雷諾數變化對跳躍距離之影響 113
圖5.5 改變雷諾數對邊界層厚度之影響 114
圖5.6 於x/d=5 時之邊界層厚度與雷諾數及噴嘴高度之
關係圖 115
圖5.7 改變雷諾數對壁噴流平均速度之影響 116
圖5.8 改變雷諾數與噴嘴高度對局部區域紐塞數之影響 117
圖5.9 改變雷諾數與噴嘴高度對局部區域紐塞數之影響
並與先前學者比較 118
圖5.10 改變噴嘴高度z/d 對停滯點紐塞數之影響並與先
前學者相比較 119
圖5.11 空氣噴流流場結構照片,雷諾數Rej=13000 120
圖5.12 空氣噴流流場結構分析示意圖 121
圖5.13 改變噴嘴高度(z/d )對停滯點紐塞數之影響 122
圖5.14 改變噴嘴高度及壁邊熱通量對停滯點紐塞數之影響 123
圖5.15 停滯點紐塞數Nuo, 與雷諾數Rej 及噴嘴高度 z/d
之關係式; 6500≦Rej≦26000 124
圖5.16 改變通道面熱流量對局部區域紐塞數之影響
z/d=5, 6.67, 8.33, and 10,Rej=26000 125
圖5.17 改變雷諾數對局部區域紐塞數之影響
z/d=5, 6.67, 8.33, and 10 126
圖5.18 雷諾數與局部區域紐塞數之關係與先前學者相比較. 127
圖5.19 平均紐塞數與雷諾數之關係式 128
圖5.20 平均紐塞數與雷諾數之關係式與量測值與之比較 129
圖5.21 旋轉雷諾數對局部區域紐塞數之影響,Rej=6500 130
圖5.22 旋轉雷諾數對局部區域紐塞數之影響,Rej=26000 131
圖5.23 雷諾數及旋轉雷諾數對峰尖之之偏移量關式 132
圖5.24 旋轉平直通道內噴流之速度與力分析圖 133
圖5.25 雷諾數及旋轉雷諾數之變化對停滯點紐塞數及平均
紐塞數之影響 134
圖5.26 雷諾數及旋轉雷諾數之變化對停滯點紐塞數及平均
紐塞數之影響 135
圖5.27 旋轉通道與靜止通道紐塞數之比較 136
圖5.28 平均紐塞數與雷諾數及旋轉雷諾數之關係式
(a)順風方向(b)迎風方向 137
圖5.29 停滯點紐塞數與雷諾數及旋轉雷諾數之關係式 138
圖5.30 旋轉曲面通道內噴流之速度與力分析圖 139
圖5.31 曲面通道對局部區域紐塞數之影響. 140
圖5.32 橫風與旋轉對局部區域紐塞數之影響 141
圖5.33 粗糙面及橫風對局部區域紐塞數之影響 142
圖5.34 由流場觀察並量測橫風所造成停滯點偏移 143
圖5.35 橫風因素所造成局部紐塞數及峰尖偏移變化與先前
學相者比較 144
圖5.36 橫風所造成平均紐塞數之影響 145



參考文獻 References
參 考 文 獻
1. Akella, K. V., and Han, J. C., 1999,”Impingement Cooling in Rotating Two-Pass Rectangular Channels with ribbed walls,” Journal of Thermophysics and heat transfer, Vol. 13, pp. 364-371.
2. Alpert, R. L., 1987, ”Convective Heat Transfer in the Impingement Region of a Buoyant plume, ” Journal of heat transfer, Vol. 109, pp. 120-124.
3. Baydar, E., 1999, ”Confined impinging air jet at low Reynolds numbers, ” Experimental Thermal and Fluid Science, Vol. 19, pp. 27-33.
4. Becko, Y., 1976, ”Impingement Cooling-a Review, ” Von Karman Institute for Fluid Dynamics, Lecture Series 83, Turbine Blade Cooling.
5. Behbahani, A. I., Disimile, P. J., and Aydore, S., 1989, ”Flow Visualization in An Impinging Circular Air Jet, ” National Heat Transfer Conference HTD-Vol. 112, Heat Transfer Measurements, Analysis, and Flow Visualization.
6. Bernard, A., Brizzi, L. E., and Bousgarbies, J. L., 1999, ”Study of Several Jets Impinging on a Plane Wall: Visualizations and Laser Velocimetry Investigations,” Journal of Fluid Engineering, Vol. 121, pp. 808-812.
7. Bhansali, A. P., and Black, W. Z., 1996, "Local, Instantaneous Heat Transfer Coefficients for Jet Impingement on a Phase Change Surface,” Journal of Heat Transfer., Vol.118, pp. 334-342.
8. Bhat, G. S., and Narasimha, R., 1996, "A Volumetrically Heated Jet: Large-eddy Structure and Entrainment Characteristics, " Journal Fluid Mechanics, Vol.325, pp. 303-330.
9. Bizzak, D. J., and Chyu, M. K., 1994, "Use of a Laser-Induced Fluorescence Thermal Imaging System for Local Jet Impingement Heat Transfer Measurement," International Journal of Heat Mass Transfer, Vol.18, pp.267-274.
10. Boguslawski, L., and Popile, C. O., 1978, "A Volumetrically Flow Structure of the Free Roung Turbulent Jet in the Initial Region,” Journal Fluid Mech., Vol.90, pp. 531-539.
11. Bouchez, J. P., and Goldstein, R. J., 1975, "Impingement Cooling From a Circular Jet in A Cross flow," International Journal of Heat Mass Transfer, Vol.18, pp.719-730.
12. Brignoni, L. A., and Garimella, S. V., 2000, ”Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 1133-1139.
13. Bunker, R. S., Metzger, D. E., and Wittig, S., 1992, "Local Heat Transfer in Turbine Disk Cavities: Part l—Rotor and stator Cooling With Hub Injection of Coolant," Journal of Turbomachinery, Vol.114, pp.211-220.
14. Bunker, R. S., Metzger, D. E., and Wittig, S., 1992, "Local Heat Transfer in Turbine Disk Cavities: Part ll—Rotor Cooling With Radial Location Injection of Coolant," Journal of Turbomachinery, Vol.114, pp.221-228.
15. Catrakis, H. J., and Dimotakis, P. E., 1996, "Mixing in Turbulent Jets: Scalar measures and Isoserface Geometry,” Journal Fluid Mechanics, Vol.317, pp. 317-329.
16. Cavaliere, A., El-naggar, M, and Ragucci, R., 1994, "Experimental Analysis of Intermaterial Surface in the Study of Gaseous Mixing Characteristics,” International Journal of Heat and Mass Transfer, Vol. 19, pp. 843-851.
17. Chandra, P. R., Fontenot, M. L., and Han, J. C., 1993, "Effect of Rid Profiles on Turbulent Channel Flow Heat Transfer,” Journal of Thermophysics, Vol 12, pp. 116-118.
18. Chandra, P. R., Fontenot, M. L., and Han, J. C., 1998, "Effect of Rib Profiles on Turbulent Channel Flow Heat Transfer,” Journal of Thermophysics and Heat Transfer, Vol. 12, pp. 116-118.
19. Chang, C. T., Kojasoy, G, Landis, F., and Downing, S., 1994, "Confined Single- and Multiple-Jet Impingement Heat Transfer—1.Tirbulent Submerged Liquid Jets,” International Journal of Heat and Mass Transfer, Vol. 19, pp. 833-842.
20. Chang, C. T., Kojasoy, G, Landis, F., and Downing, S., 1994, "Confined Single- and Multiple-Jet Impingement Heat Transfer—2.Tirbulent Two-Phase Flow,” International Journal of Heat and Mass Transfer, Vol. 19, pp. 843-851.
21. Cho, H. H., and Rhee, D. H., 2001, "Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems,” Journal of Turbomachinery, Vol.123, pp.601-608.
22. Chou, Y. J., and Hung, Y. H., 1994, "Impingement Cooling of an Isothermally Heated Surface With a Confined Slot Jet,” Journal of Heat Transfer, Vol.116, pp. 479-482.
23. Chyu, M. K., and Hsing, Y. C., Natarajan, V., 1998, "Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel,” Journal of Heat Transfer, Vol.120, pp. 362-367.
24. Colucci, D. W., and Viskanta R., 1996, "Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet,” Experimental Thermal and Fluid Science, Vol. 13, pp.71-80.
25. Cornaro, C., Fleischer, A. S., and Goldstein, R. J., 1999, "Flow Visualization of a round Jet Impinging on Cylindrical Surfaces,” Experimental Thermal and Fluid Science , Vol. 20, pp. 66-78.
26. Donaldson, C. D., and Snedeker, R. S., 1971a, "A Study of Free Jet Impingement, Part 1. Mean Properties of Free and Impinging Jets,” Journal of Fluid Mechanics, Vol. 45, part 2, pp.281-319.
27. Donaldson, C. D., and Snedeker, R. S., 1971b, "A Study of Free Jet Impingement, Part 2. Free Jet Turbulent Structure and Impingement Heat Transfer,” Journal of Fluid Mechanics, Vol. 45, Part 3, pp.477-512
28. Dyban, E. P., Mazur, A. I., And Golovanov, V. P., 1979, "Heat Transfer and Hydrodynamics of An Array of Round Impinging Jets With One-sided Exhaust of The Spent Air," International journal of Heat Mass Transfer, Vol. 23, pp. 667-676.
29. Elison, B., and Weeb, B. W., 1994, "Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes," International Journal of Heat Mass Transfer, Vol. 37, pp. 1207-1216.
30. Fitzgerald, J. A., and Garimella, S. V., 1997, "Flow Field Effects on Heat Transfer in Confined Jet Impingement,” Journal of Heat Transfer, Vol. 119, pp. 630-632.
31. Fitzgerald, J. A., and Garimella, S. V., 1998, "A Study of the Filed of a Confined and Submerged Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 1025-1034.
32. Fleischer, A. S., Kramer, K., and Goldstein, R. J., 2001, "Dynamics of the Vortex Structure of a Jet Impinging on a Convex Surface,” Experimental Thermal and Fluid Science, Vol. 24, pp. 169-175.
33. Florschuetz, L.W., Berry, R. A. and Metzger, D. E., 1980, "Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air," Journal of Heat Transfer, Vol. 102, pp.132-137.
34. Florschuetz, L.W., Metzger, D. E., and Su, C. C., 1984, "Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow," Journal of Heat Transfer, Vol. 106, pp.34-41.
35. Fitzgerald, J. A., and Garimella, S. V., 1998, "A Study of the Filed of a Confined and Submerged Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 1025-1034.
36. Friddell, J. H., and Franke, M. E., 1992, "Confined Jet Thrust Vector Control Nozzle Studies,” Journal of Propulsion and Power, Vol. 8, pp. 1239-1244.
37. Gabour, L. A., and Lienhard, J. H., 1994, "Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet,” Journal of Heat Transfer, Vol. 116, pp. 81-877
38. Gardon, R., and Cobonpue, J., 1963, "Heat Transfer Between a Flat Plate and Jets of Air Impinging on It,” in: International Developments in Heat Transfer, Proceedings of the 2nd International Heat Transfer Conference, ASME, pp. 454-460.
39. Gardon, R., and Akfirat, J. C., 1965 "The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,” International Journal of Heat Mass Transfer, Vol. 8, pp. 1261-1272.
40. Gardon, R., and Akfirat, J. C., 1966, "Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets,” Journal of Heat Transfer, Vol.88, pp. 101-108.
41. Garimella, S. V., and Rice, R. A., 1995, "Confined and Submerged Liquid Jet Impingement Heat Transfer,” Journal of Heat Transfer, Vol. 117, pp. 871-877.
42. Gau, C., and Chung, C. M., 1991, "Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process,” Journal of Heat Transfer, Vol. 113, pp. 858-864.
43. Gau, C., and Lee, C. C., 1992, "Impingement Cooling Flow Structure and Heat Transfer along Rib-Roughened Walls,” International Journal of Heat Mass Transfer, Vol. 35, pp. 3009-3020.
44. Gau, C., and Sheu, W. Y., Shen, C. H., 1997, "Impingement Cooling Flow and Heat Transfer Under Acoustic Excitations,” Journal of Heat Transfer, Vol. 119, pp. 810-817.
45. Gau, C., and Lee, I. C., 2000, "Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 4405-4418.
46. Goldstein, R. J., and Behbahani, A. I., 1982, "Impingement of a Circular Jet With and Without Cross Flow,” International Journal of Heat and Mass Transfer, Vol. 25, pp. 1377-1382.
47. Goldstein, R. J., and Timmers, J. F., 1982, "Visualization of Heat Transfer From Arrays of Impinging Jets," International Journal of Heat Mass Transfer, Vol. 25, pp. 1857-1868.
48. Goldstein, R. J., Behbahani, A. I., and Heppelmann, K. K., 1986, "Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet,” International Journal of Heat and Mass Transfer, Vol. 29, pp. 1227-1235.
49. Goldstein, R. J., and Franchett, M. E., 1988, "Heat Transfer From a Flat Surface to an Oblique Impinging Jet,” Journal of Heat Transfer, Vol. 110, pp. 84-90.
50. Goldstein, R. J., Sobolik, K. A., and Seol, W. S., 1990, "Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface,” Journal of Heat Transfer, Vol. 112, pp. 608-611.
51. Grasso, F., and Magi, V., 1995, "Simulation of Transverse Gas Injection in Turbulent Supersonic air Flows,” AIAA Journal, Vol. 33, pp. 56-62
52. Hong, Y. J., and Hsieh, S. S., 1993, "Heat Transfer and Friction Factor Measurements in Ducts With Staggered and In-Line Ribs,” Journal of Heat Transfer, Vol. 115, pp. 58-65.
53. Hsieh, S. S., and Hong, Y. J., 1995, "Heat transfer Coefficients in an Orthogonally Rotating Duct With Turbulent,” Journal of Heat Transfer, Vol. 117, pp. 69-78.
54. Hsieh, S. S., Huang J. T., 1997, "Heat Transfer and Flow Characteristics of Circular Jets Impinging on a Horizontal Flat Wall,” ASME ASIA ‘97 Congress & Exhibition Singapore-September 30-October 2.
55. Hsieh, S. S., Huang J. T., and Liu, C. F., 1999, "Local Heat Transfer in a Rotating Square Channel With Jet Impingement,” Journal of Heat Transfer, Vol. 121, pp. 811-818.
56. Hsieh, S. S., Huang J. T., and Huang-Hsiu, Tsai., 2001, "Heat Transfer of Confined Circular Jet Impingement,” The Chinese Journal of Mechanics., Vol. 17. , pp. 29-38.
57. Hsieh, S. S., Huang J. T., and Huang-Hsiu, Tsai., 2001, "Visualization of Flow Phenomena for Confined Circular Jet Impingement,” The Chinese Journal of Mechanics, Vol. 17, pp. 55-59.
58. Hsieh, S. S., Huang J. T., and Huang-Hsiu, Tsai., 2002, "Impingement Cooling in a Rotating Curved Square Annular Duct with Crossflow Effect from Rib-Roughened Surface,” Heat and Mass Transfer, Vol. 31, pp. 55-77.
59. Hibara, H., and Sudou, K., 1996, "Axisymmetric Jet Impinging on Concave Surface,” The Japanese Journal of Mechanics, Vol. 62, pp. 141-148.
60. Huang, G. C., 1963, "Investigations of Heat-transfer Coefficients for Air Flow Through Round Jets Impinging Normal to a Heat-Transfer Surface,” Journal of Heat Transfer, Vol. 127, pp. 237-245.
61. Ichimiya, K., and Hosaka, N., 1992, "Experimental Study of Heat Transfer Characteristics due to Confined Impinging Two-Dimensional Jets,” Experimental Thermal and Fluid Science, Vol. 5, pp. 803-807.
62. Ichimiya, K., 1995, "Heat Transfer and Flow Characteristics of an Oblique Turbulent Impinging Jet Within Confined Walls,” Journal of Heat Transfer, Vol.117, pp. 316-322.
63. Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., 1992, "A Review of Heat Transfer data for Single Circular Jet Impingement,” International Journal of Heat and Fluid Flow, Vol. 13, pp. 106-115.
64. Korger, M., and Krizek, F., 1965, "Mass-Transfer Coefficient in Impingement Flow From Slotted Nozzles,” International Journal of Heat and Mass Transfer, Vol. 9, pp. 337-344
65. Lee, D. H., Won, S. Y, Kin, Y. T., and Chung, Y. S., 2001, "Turbulent Heat Transfer From a Flat Surface to a Swirlung Round Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 223-227.
66. Lee, X., Zheng, Q., Ma, C. F., Zhuang, Y., and Tian, Y. Q., 1997, "Numerical Study of Recovery Effect and Impingement Heat Transfer with Submerged Circular Jets of Large Prandtl Number Liquid,” International Journal of Heat and Mass Transfer, Vol. 40, pp. 2647-2653.
67. Liu, T., and Sullivan, J. P., 1996, "Heat Transfer and Flow Structures in an Excited Circular Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 3695-3706.
68. Liu, W., Wang, G. X., and Matthys, E. F., 1995, "Thermal Analysis and Meansurements for a Molten Metal Drop Impinging on a Substrate: Cooling, solidifjcation and Heat Transfer Coefficient,” International Journal of Heat and Mass Transfer, Vol. 38, pp. 1387-1395.Liu, X., Lienhard V, J. H., and Lombara,J. S., 1991, "Convective Heat Transfer by Impingement of Circular Liquid Jets,” Journal of Heat Transfer, Vol. 113, pp. 571-582.
69. Li, C. Y., and Garimella, S. V., 2001, "Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3471-3480.
70. Lienhard V, Liu, X, and Gabour, L. A., 1992, "Splattering and Heat Transfer During Impingement of a Turbulent Liquid Jet,” Journal of Heat Transfer, Vol.114, pp. 362-372.
71. Lin, Z. H., Chou, Y. J., and Hung, Y. H., 1997, "Heat Transfer Behaviors of a Confined Slot Jet Impingement,” International Journal of Heat and Mass Transfer, Vol. 40, pp. 1095-1107.
72. Liou, T. M., Hsiao, K.L., and Tsai, M. K., 1991, "Experimental and Theorrtical Studies on Turbulent Mixing of Two Confined Jets,” International Journal Heat and Fluid Flow, Vol.12, pp. 210-217.
73. Lytle, D., and Webb, B. W., 1994, "Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacing,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 1687-1697.
74. Ma, C. F., and Zheng, Q., Ko, S. Y., 1997, "Local Heat Transfer and Recovery Factor with Impinging Free-Surface Circular Jets of Transformer Oil,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 1639-1647.
75. Martinuzzi, R., Zaghloul, A. M. and Al-Qaraguli, W., Baddour, R. E., 1998, "Turbulence Structure of Plane Surface-Jets in a Weak Coflowing Stream for Different Initial Weak Conditions, " Journal of Fluids Engineering, Vol.120, pp.77-82.
76. Mattern, C., and Hennecke, D. K., 1996, "The Influence of Rotation on Impingement Cooling,” International Gas Turbine and Aeroengine Congress & Exhibition Birmingham, UK-June 10-13.
77. Maurel, A., and Ern, P., and Zikikout, S., 1993, "Flow Visualization of a Confined Jet,” Experimental and Numerical Flow Visualization, Vol. 172, pp. 261-267.
78. Metzger, D. E., Yamashita, T. and Jenkins, C. W., 1969, "Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets," ASME Journal of Engineering for Power, July, pp.149-158.
79. Metzger, D. E., Baltzer, R. T. and Jenkin, C. W., 1972, "Impingement Cooling Performance in Gas Turbine Airfoils Including Effects of Leading Edge Sharpness, " Journal of Engineering for Power, July, pp.219-225.
80. Metzger, D. E., and Grochowsky, L D., 1977, "Heat Transfer Between an Impinging Jet and a Rotating Disk," Journal of Heat Transfer, Vol. 99, pp.663-672.
81. Metzger, D. E., Florschuetz, L.W., Takeuchi, D. I., Behee, R. D. and Berry, R. A., 1979, "Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air," Journal of Heat Transfer, Vol. 101, pp.526-531.
82. Metzger, D. E., Bunker, R.S., Chyu, M. K., 1989, "Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel," Journal of Heat Transfer, Vol. 111, pp.73-79.
83. Metzger, D. E., Bunker, R. S., Bosch, G., 1991, "Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement," Journal of Heat Transfer, Vol. 113, pp.52-59.
84. Miyake, G., and Hirata, M., and Kasagi, N., 1994, "Heat Transfer Characteristics of an Axisymmetric Jet Impinging on a Wall with Concentric Roughness Elements,” Experimental Heat Transfer, 7:121-141.
85. Moffat, R. J., 1988, "Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 52, pp. 3-17.
86. Mohanty, A. K., and Tawfek, A. A., 1993, "Heat Transfer Due to a Round Jet Impinging Normal to a Flat Surface,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 1639-1647.
87. Mohr, J. W., Seyed-Yagoobi, J., and Paga, , R. H., 1997, "Heat Transfer Characteristics of a Radial Jet Reattchment Flame,” Journal of Heat Transfer, Vol. 119, pp. 258-263.
88. Obot, N. T.,and Trabold, T. A., 1987, "Impingement Heat Transfer Within Arrays of Circular Jet: Part l—Effects of Minimum, Intermediate, and Complete Cross flow for Small and Large Spacings,” Journal of Heat Transfer, Vol. 109, pp. 872-879.
89. Pamadi, B. N., and Belov, I. A., 1980, "A Note on the Heat Transfer Characteristics of Circular Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 23, pp. 783-787.
90. Parson, J. A., and Han, J. C., 1998, "Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target walls and Radially Outward Crossflow," International Journal of Heat Mass Transfer, Vol. 41, pp.2059-2071.
91. Persons, J. A., Han, J. C., and Lee, C. P., 1998, "Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radially Outward Cross flow,” Journal of Turbomachinery, Vol. 120, pp. 79-85.
92. Popiel, C. O., and Boguslawski, L., 1986, "Local Heat Transfer From a Rotating Disk in an Impinging Round Jet,” Journal of Heat Transfer, Vol. 108, pp. 357-364.
93. Popiel, C. O., and Trass, O., 1991, “Visualization of a Free and Impinging Round Jet,” Eeperimental Thermal and Fluid Science, Vol. 4, pp. 253-264.
94. Popiel, C. O., and Trass, O., 1991, "Visualization of a Free and Impinging Round Jet,” Experimental Thermal and Fluid Science, Vol. 4, pp. 253-264.
95. Prideman, D., Callahan, V.,and Weeb, B. W., 1994, "Enhancement of Liquid Jet Impingement Heat Transfer With Surface Modifications,” Journal of Heat Transfer, Vol. 116, pp. 486-489.
96. Raman, G., 1997, "Cessation of Screech in Underexpanded Jets," Journal Fluid Mech., 336. 41, pp.69-90.
97. San, J. Y., Huang, C. H., and Shu, M. H., 1997, "Impingement Cooling of a Congined Circular Air Jet,” International Journal of Heat and Mass Transfer, Vol.40, pp. 1355-1364.
98. Shadlesky, P. S., 1982, "Stagnation Point Heat Transfer for Jet Impingement to a Plane Surface,” AIAA Journal, Vol. 21, pp. 1214-1215.
99. Sheriff, H. S., and Zumbrunnen, D. A., 1994, "Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet,” Journal of Heat Transfer, Vol. 116, pp. 886-895.
100.Shu, J. J.,and Wilks, G., 1996, "Heat Transfer in the Flow of a Cold, Two-dimensional Vertical Liquid Jet Against a Hot, Horizontal Plate,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 3367-3379.
101.Smith, S. M., and Mungal, M. G., 1998, "Mixing, Structure and Scaling of the Jet in Crossflow," Journal of Fluid Mechanics, Vol. 357, pp. 83-122.
102.Sparrow, E. M., and Wong, T. C., 1975, "Impingement Transfer Coefficients Due to Initially Laminar Slot Jets,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605.
103.Sparrow, E. M., Goldstein, R. J. and Rouf, M. A., 1975, "Effect of Nozzle-Surface Separation Distance on Impingement Heat Transfer for a Jet in a Crossflow," ASME Journal of Heat Transfer, November, pp.528-533.
104.Sparrow, E. M., Altemani, C. A. C., and Chaboki, A., 1984, " Jet Impingement Heat Transfer for Circular Jet Impinging in Crossflow on a Cylinder," Journal of Heat Transfer, Vol.106. pp. 570-577.
105.Sparrow, E. M., Xu, Z. X., and Azevedo, L. F. A., 1987, "Heat (Mass) Transfer for Circular Jet Impingement on a Confined Disk With Annular Collection of the Spent air," Journal of Heat Transfer, Vol.109. pp. 329-335.
106.Stevens, J., and Webb, B. W., 1991, "Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet,” Journal of Heat Transfer, Vol. 113, pp. 71-78.
107.Stevens, J., and Webb, B. W., 1992, "Measurements of the Free Surface Flow Structure Under an Impinging, Free Liquid Jet,” Journal of Heat Transfer, Vol. 114, pp. 79-84.
108.Stevens, J., and Webb, B. W., 1993, "Measurements of Flow Structure in the Stagnation Zone of Impinging, Free Liquid Jet,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 4283-4286.
109.Stridgl, S. A., and Diller, T. E., 1984, "An Analysis of Entrainment Temperature on Jet Impingement Heat Transfer,” Journal of Heat Transfer, Vol. 106, pp. 804-810.
110.Sun, H., and Ma, C. F., 1997, "Effect of Variable Fluid Properties on Impingement Heat Transfer with Submerged Circular Jets ,” International Journal of Heat and Mass Transfer, Vol.41, pp. 1363-1366.
111.Tabakoff, W., and Clevenger, W., 1972, "Gas Turbine Blade Heat Transfer Augmentation by Impingement of Air Jets Having Various Configurations,” Journal of Engineering for Power, Vol. 94, pp. 51-60.
112.Thomas, S., Hankey, W., Faghri, A., and Swanson, T., 1990, “One-Dimensional Analysis of the Hydrodynamic and Thermal Characteristics of Thin Film Flows Including the Hydraulic Jump and Rotation,” Journal of Heat Transfer, Vol. 112, pp.728-735.
113.Thomas, S., Faghri, A., and Rahman, M. M., 1993, "Conjugate Heat Transfer From a Heated Disk to aThin Liquid Film Formed by a Controlled Impinging Jet,” Journal of Heat Transfer, Vol. 115, pp.116-123.
114.Trabold, T. A., and Obot, N. T., 1987, "Impingement Heat Transfer Within Arrays of Circular Jets:Part 2-Effects of Cross flow in the Presence of Roughness Elements," Journal of Heat Transfer, Vol. 109, pp.594-601.
115.Vader. D. T., Incropera, F. P., and Viskant, R., 1991, "Local Convective Heat Transfer From a Heated Surface to an Impinging, Planar Jet of Water,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 611-623.
116.Viskant, R, and Huber, A. M., 1994, "Comparison of Convective Heat Transfer to Perimeter and Center Jets in Confined, Impinging Array of Axisymmetric air Jets,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 3025-3030.
117.Viskant, R, Slayzak, S. J., and Incropert, F. P., 1994, "Effect of Interaction Between Adjacent Free surface Planar Jets on Local Heat Transfer From the Impingement Surface,” International Journal of Heat and Mass Transfer, Vol. 37, pp. 269-282.
118.Voke, P. R, and Gao, S., 1998, "Numerical Study of Heat Transfer From an Impinging Jet,” International Journal of Heat and Mass Transfer, Vol. 41, pp. 671-680.
119.Wadsworth, D. C., and Mudawar, I.,1990, "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional Jets of Dielectric Liquid,” Journal of Heat Transfer, Vol. 112, pp. 891-898
120.Weeb, B. W., and Stevens, J., 1992, "Measurements of the Free Surface Flow Structure Under an Impinging, Free Fiquid Jet,” Journal of Heat Transfer, Vol. 114, pp. 79-84.
121.Weeb, B. W., and Hansen, L. G., 1993, "Air Jet Impingement Heat Transfer Form Modified Surfaces,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 989-997
122.Weeb, B. W., and Stevens, J.1993, "Measurements of Flow Structure in the Stagnation Zone Free-Surface Liquid Jets,” Journal of Heat Transfer, Vol. 36, pp. 4283-4286.
123.Weeb, B. W., and Stevens, J.1993, "Measurements of Flow Structure in the Radial Layer of Impinging Free-Surface Liquid Jet,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 3751-3758.
124.Wolf, D.H., Viskanta, R., and Incropera, F. P., 1995, "Turbulence Dissipation in a FreSurface Jet of water and its Effect on Local Impingement Heat Transfer Form aHeated Surface: Part l—Flow Structure,” Journal of Heat Transfer, Vol. 117, pp. 85-94.
125.Wolf, D.H., Viskanta, R., and Incropera, F. P., 1995, "Turbulence Dissipation in a FreSurface Jet of water and its Effect on Local Impingement Heat Transfer Form aHeated Surface: Part ll—Local Heat Transfer,” Journal of Heat Transfer, Vol. 117, pp. 95-103.
126.Womac, D. J., Ramadhyani, S., and Incropera, F. P., 1993, "Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets,” Journal of Heat Transfer, Vol. 115, pp. 106-115.
127.Yule, A. J., Damou, M., and Kostopoulos, D., 1992, "Modeling Confined Jet Flow,” Journal of Heat and Fluid, Vol. 14, pp. 10-17.
128.Zumbrunnen, D. A., Incropera, F. P., and Viskanta, R., 1989, "Convective Heat Transfer Distributions on a Plate Cooled by Planar Water Jets,” Journal of Heat Transfer, Vol. 111, pp. 889-896.
129.Zumbrunnen, D. A., 1991, "Convective Heat Transfer and Mass Transfer in Stagnation Region of a Laminar Planar Jet Impinging on a Moving Surface,” Journal of Heat Transfer, Vol. 113, pp. 563-570.
130.Zumbrunnen, D. A., and Aziz, M., 1993, "Convective Heat Transfer Enhancement Due to Gas Intermittency in an Impinging Jet,” Journal of Heat Transfer, Vol. 115, pp. 91-98.
131.Zumbrunnen, D. A., and Balasubramanian, M., 1995, "Convective Heat Transfer Enhancement Due to Gas Injection Into an Impinging Liquid Jet,” Journal of Heat Transfer, Vol. 117, pp. 1011-1017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code