Responsive image
博碩士論文 etd-0825104-153820 詳細資訊
Title page for etd-0825104-153820
論文名稱
Title
熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究
Kinetic Modeling of the Adsorption of Mercury Chloride Vapor on Spherical Activated Carbon by Thermogravimetric Anaylysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-07
繳交日期
Date of Submission
2004-08-25
關鍵字
Keywords
氯化汞、熱重分析、恆溫吸附模式、吸附動力模式、球狀活性碳
thermogravimetric analysis (TGA), Spherical activated carbon, mercury chloride, adsorption isotherm, adsorptive capacity
統計
Statistics
本論文已被瀏覽 5655 次,被下載 6348
The thesis/dissertation has been browsed 5655 times, has been downloaded 6348 times.
中文摘要
在都市垃圾焚化處理過程中,由於垃圾分類未能確實執行,使得焚化垃圾中夾雜許多有害物質,而這些有害物質往往無法藉由焚化或空氣污染控制設備予以去除。在都市垃圾成份中以重金屬物質最難處理,其中又以含汞污染物較為人們所重視,其對環境及人體健康之危害甚鉅。汞金屬及其化合物(如:氯化汞)因具有較高之蒸氣壓,故在焚化爐高溫環境下極易揮發而隨廢氣排出,若未能以空氣污染控制設備(Air Pollution Control Devices; APCD)予以有效去除,則會排放至大氣中,再經由不同的傳播途徑對環境生物造成嚴重傷害。
污染物在多孔性吸附劑進行吸附時,吸附質經分子擴散作用,由濃度較高的外界環境進入吸附劑的過程,一般區分為下列三個步驟:外部擴散(external diffusion)、內部擴散(internal diffusion)及表面吸附(surface adsorption)。由於一般吸附反應速率相當快(約10-6 sec),所以控制污染物吸附速率之快慢主要與擴散步驟有關。
若能了解控制氣相氯化汞在活性碳中之傳輸與平衡機制,並求得最佳參數,將有助於設計更有效率更可靠之且吸附設備。國內外相關研究多集中於污染物(如: VOCs)在吸附劑中吸/脫附平衡與動力探討;相對而言,氣相重金屬在高溫之吸附平衡與動力之研究則甚少,因此值得深入探討。本研究旨在探討球狀活性碳對於氣相氯化汞之吸附能力,並模擬室溫(30℃)及高溫(70℃及150℃)條件對氯化汞吸附模式之影響,建立球狀活性碳吸附氣相氯化汞之等溫吸附模式及吸附動力模式。
本研究之實驗結果發現在恆溫操作條件下,球狀活性碳之氯化汞吸附容量因氣固平衡反應之故,隨氯化汞初始濃度之增加而有升高之趨勢。球狀活性碳於高溫操作條件下,氯化汞吸附容量較室溫為低。
由等溫吸附模式結果得知,在30 ℃及70℃時,球狀活性碳吸附氣相氯化汞行為偏向Freundlich Isotherm,由n值可判斷球狀活性碳吸附氣相氯化汞為有利吸附(n<1)且屬於單層吸附反應。但在150 ℃時則為不利吸附(n>1)。由實驗結果與模式比較後證明,經修改後的孔隙擴散模式能夠用於模擬室溫及高溫條件下活性碳對氯化汞之吸附行為。
Abstract
This study investigated the adsorptive capacity and isotherm of HgCl2 onto spherical activated carbons (SAC) via thermogravimetric analysis (TGA). Activated carbon injection (ACI) is thought as the best available control technology (BACT) for mercury removal from flue gas. There are two major forms of vapor-phase mercury, Hgo and Hg2+, of which HgCl2 accounts for 60-95% of total mercury. Mercury emitted from the incineration of municipal solid wastes (MSW) could cause severely adverse effects on human health and ecosystem since it exists mainly in vapor phase due to high vapor pressure. Although the adsorptive capacity of HgCl2 onto activated carbon has been studied in previous adsorption column tests, only a few studies have thoroughly investigated the adsorption isotherms of HgCl2 onto SAC.
Equilibrium and kinetic studies are important towards obtaining a better understanding of mercury adsorption. Many investigations have addressed the relationship between sorption kinetics and equilibrium for different adsorbent/adsorbate combinations. For the removal of vapor-phase mercury, several bench-pilot, and full-scale tests have be proceeded to examine the influence of carbon types, carbon structures, carbon surface characteristics, injection methods (dry or wet), amount of carbon injected, and flue gas temperature on mercury removal. In addition, the dynamics of spherical activated carbons (SAC) adsorbers for the uptake of gas-phase mercury was evaluated as a function of temperature, influent concentration of mercury, and empty-bed residence time. However, only a few studies investigated the adsorption isotherms of HgCl2 onto activated carbons.
In this study, TGA was applied to obtain the adsorptive capacity of HgCl2 onto SAC with adsorption temperature (30~150oC) and influent HgCl2 concentration (50~1,000μg/m3). Experimental results indicated that the adsorptive capacity of HgCl2 onto SAC was 0.67and 0.20 mg/gC at 30、70 and 150oC, respectively. This study investigated the adsorptive capacity of HgCl2 vapor onto SAC via TGA analysis. Experimental results indicated that the adsorptive capacity of SAC decreased with the increase of the adsorption temperature. Furthermore, the results suggested that that the adsorption of SAC on HgCl2 vapor was favorable equilibrium at 30 and 70℃ and unfavorable equilibrium at 150℃. In comparison of the experimental data with isotherm equations, Freundlich isotherm fitted the experimental results better than Langmuir isotherm. The model simulations were found to fit very well to the high concentration experimental kinetic data for both adsorption and desorptionusing two adjust parameter, effective diffusivity, and the Freundlich isothermexponent. The extracted model parameter, effective diffusivity and n, were then used to predict the experimental kinetic data for the same combination at other concentrations.
目次 Table of Contents
目 錄
中文摘要……………………………………………………….. Ⅰ
英文摘要……………………………………………………….. Ⅲ
目錄………………………………………………………………. Ⅳ
表目錄…………………………………………………………… Ⅷ
圖目錄…………………………………………………………….. Ⅸ
第一章 前言…………………………………………………… 1-1
1-1 研究緣起…………………………………………………… 1-1
1-2 研究目的……………………………………………………… 1-2
第二章 文獻回顧……………………………………………… 2-1
2-1 含汞污染物之來源及種類………………………………. 2-1
2-1-1 含汞污染物之來源………………………………… 2-1
2-1-2 含汞污染物之傳輸途徑………………………….. 2-3
2-2 含汞污染物之排放標準與控制技術…………………… 2-6
2-2-1 都市垃圾焚化爐含汞污染物之排放標準…… 2-6
2-2-2 含汞污染物之控制技術………………………….. 2-7
2-3 汞之物化特性及影響……………………………………… 2-9
2-3-1 汞之物理化學特性………………………………… 2-9
2-3-2 汞對人體健康之影響………………………….. 2-11
2-4 活性碳之種類與特性……………………………………… 2-13
2-4-1 活性碳之種類……………………………………… 2-13
2-4-2 活性碳之物化特性……………………………….. 2-15
2-4-3 活性碳之吸附機制……………………………….. 2-17
2-5吸附模式及理論……………………………………………… 2-18
2-5-1 吸附擴散模式……………………………………… 2-19
2-5-2 恆溫吸附模式……………………………………… 2-19
2-5-2-1 Langmuir Isotherm……………………..… 2-20
2-5-2-2 Freundlich Isotherm……………………… 2-22
2-5-2-3 Redlich and Peterson Isotherm…………… 2-23
2-5-2-4 Toth Isotherm Isotherm………………… 2-24
2-5-2-5 Brunauer-Emmett-Teller Isotherm…….. 2-25
2-5-3 恆溫吸附曲線特性… …………………………… 2-25
2-5-3-1恆溫吸附曲線類型………………………. 2-25
2-5-3-2滯後(Hysteresis loop)現象………………. 2-27
2-5-4 動力吸附模式………………………………... 2-31
2-6 活性碳脫附機制與動力模式………………………. 2-35
2-7 吸附劑之孔隙曲折度……………………………….. 2-36
2-8 熱重分析儀(TGA)之應用…………………………… 2-38
第三章 研究方法……………………………………………… 3-1
3-1 實驗設計與流程…………………………………………….. 3-1
3-2 實驗設備………………………………………………………. 3-3
3-3 實驗方法……………………………………………….……… 3-4
3-4 數據處理………………………………………………………. 3-10
第四章 結果與討論…………………………………………… 4-1
4-1 活性碳物理特性分析結果………………………..………. 4-1
4-1-1 活性碳外觀構造特性……………………….……….. 4-1
4-1-2 比表面積及孔隙分析結果…………………………. 4-1
4-2 活性碳吸附氣相氯化汞之結果…………………………. 4-5
4-3 氣相氯化汞恆溫吸附模式之結果………………………. 4-9
4-4 活性碳吸附動力分析………………………………………. 4-15
4-4-1 外部擴散…………………………………….….………. 4-15
4-4-2 分子擴散………………………………………………... 4-15
4-4-3 紐森擴散…………………………….………….…….… 4-16
4-4-4 孔隙擴散…………………………………………….….. 4-16
4-5室溫下活性碳吸附動力模式預測結果………………… 4-17
4-6高溫下活性碳吸附動力模式預測結果………………… 4-22
4-6-1 70℃下活性碳吸附動力模式預測結果………..… 4-24
4-6-2 150℃下活性碳吸附動力模式預測結果………… 4-25
4-7吸附劑之孔隙曲折度……………………………….………. 4-36
第五章 結論與建議……………………………….…………………… 5-1
5-1結論……………………………………………………..……….. 5-1
5-2建議………………………….……………………….……….…. 5-2
參考文獻……………………………………………………..………….… 6-1
參考文獻 References
Ames, M., Gullu, G. Olmez, I. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York. 32(5), 865-872, 1998.
Ariyadejwanich, P., Tanthapanichakoon, W., Nakagawa, K., Mukai, S.R., Tamon, H. Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 41, 157-164, 2003.
Bai, R. and Yang, R.T. Athermodynamically consistent Langmuir model for mixed gas adsorption. J. Colloid Interface Sci. 239, 296-302, 2001.
Bansal, R.C., Active Carbon; Marcel-Dekker: New York and Basel, 1988, p.3-4.
Benefield, L. D., Judkins, J.F., Weand, B.L. Removal of Soluble Organic Materials from Wastewater by Carbon Adsorption. Prentice-Hall, Inc., Englewood Cliffs, N.J., 365-402, 1982.
Biswas, P. and Wu, C.Y., Control of toxic metal emissions from combustors using sorbents: a review. J. Air & Waste Manage. Assoc. 48, 113-127, 1998.
Brady,T.A., Rostam-Abadi, M., Rood, M.J., Applications for activated carbons from waste tires: natural gas storage and air pollution control. Gas. Sep. Purif. 10, 97-102, 1996.
Cannon, F. S., Dusenbury, J. S., Paulsen, J., Sigh, D. W., Maurer, D. J. Advanced oxidant regeneration of granular activated carbon for controlling air-phase VOCs. Ozone Sci. Eng. 18(5) ,417-441, 1996.
Carey, T.R., Hargrove, O.W., Jr., Richardson, C.F. Factors affecting mercury control in utility flue gas using activated carbon. J. Air & Waste Manage. Assoc. 48, 1166-1174, 1998.
Chang, Y.M. On pyrolysis of waste tires: degradation rate and product yields. Res. Conserv. Recy. 17, 125-139, 1996.
Chen, J., Yiacoumi, S., Blaydes, T.G. Equilibrium and kinetic studies of copper adsorption by activated carbon. Sep. Technol. 6, 133-146, 1996.
Chen, J.P. and Lin, M. Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Wat. Res. 35(10), 2385-2394, 2001.
Cheung, C.W., Porter, J.F., McKay, G. Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep. Purif. Technol. 19, 55-64, 2000.
Clarkson, C.R.and Bustin, R.M. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int. J. Coal Geol. 42, 241-271, 2000.
Darmstadt, H., Pantea, D., Summchen, L., Roland, U., Kaliaguine, S., Roy, C. Surface and Bulk Chemistry of Charcoal Obtained by Vacuum Pyrolysis of Bark: Influence of Feedstock Moisture Content. J. Anal. Appl. Pyrolysis, 52, 1-17, 2000.
Dastgheib, S.A., Rockstraw, D.A. A model for the adsorption of single metal ion solutes in aqueous onto activated carbon produced from pecan shells. Carbon, 40, 1843-1851, 2002.
Do, H.D. and Do, D.D. Maxwell-Stefan analysis of multicomponent transient diffusion in a capillary and adsorption of hydrocarbons in activated carbon paeticle. Chem. Eng. Sci. 53(6), 1239-1252, 1998.
Fan, M. and Brown, R.C. Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash. Energy & Fuel, 15, 1414-1417, 2001.
Fettig, S.F. and Zimmer, H.H. Activated Carbon for Water Treatment. 1st edition, DVGW-Fors-chungsstelle, 1988.
Galbreath, K.C., Zygarlicke, C.J. Mercury transformations in coal combustion flue gas. Fuel Process. Technol. 65-66, 289-310, 2000.
Gibb, W.H., Clarke, F., Mehta, A.K. The fate of coal mercury during combustion. Fuel Process. Technol. 65-66, 365-377, 2000.
Gomez-Serrano, A., Macias-Garcia, A., Espinosa-Mansilla, A., Valenzuela-Calahorro, C. Adsorption of mercury, cadmium and lead from aqueous-solution on heat-treated and sulphurized activated carbon. Water Research, 32, 1-4, 1998.
Hartenstein, H.U., Horvay, M. Overview of municipal waste incineration industry in west Europe (based on the German experience). J. Hazard. Mater. 47 (1-3), 19-30, 1996.
Hasselriis F. and Licata A., Analysis of heavy metal emission data from municipal waste combustion, Journal of Hazardous Materials, 47, 77-102, 1996.
Hasselriis, F. and Licata, A. Analysis of heavy metal emission data from municipal waste combustion. J. Hazard. Mater. 47 (1-3), 77-102, 1996.
Hassler, J.W. Activated Caron. Leonard Hill, London, 1967.
Hlad&iacute;kov&aacute;, V., Petr&iacute;k, J., Jursa, S., Urs&iacute;nyov&aacute;, M., Ko&#269;an, A., Atmospheric mercury levels in the Slovak Republic. Chemosphere, 45, 801-806, 2001.
Hlawiczka, S., Kubica, K., Zielonka, U., Partitioning factor of mercury during coal combustion in low capacity domestic heating units. Environ. Sci. & Technol. 312, 261-265, 2003.
Hu, H., Trejo, M., Nicho, M.E., Saniger, J.M., Garc&iacute;a-Valenzuela, A. Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens. Actuator. B-chem. 82, 14-23, 2002.
Hunsicker, M.D., Crockett, T.R., Labode, B. M.A. An overview of the municipal waste incineration industry in Asia and the former Soviet Union. J. Hazard. Mater. 47(1-3), 31-42, 1996.
Hutchins, R.A. Economic factors in granular carbon thermal regeneration. Chem. Eng. Prog. 69(11), 48-55, 1973.
H.G. Rigo, J. Chandler and S. Sawell, municipal waste combustion, VIP-32, A&WMA, pp.609, 1993.
Innanen, S. The ratio of anthropogenic to natural mercury release in Ontario: Three emission scenarios. Sci. Total Environ. 213, 25-32, 1998.
Jasinski, S.M. The materials flow of mercury in the United States. Res. Conserv. Recycl. 15 (3-4), 145-179, 1995.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G. Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon. Combust. Sci. and Tech. 112, 163-174, 1996.
Kadirvelu, K. and Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 7, 471-478, 2003.
Kim, S., Park, J.K., Hee-Dong, C. Pyrolysis kinetics of scrap tire rubbers. I: using DTG and TGA. J. Environ. Eng. 507-514, 1995.
Korpiel, J.A.and Vidic, R.D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. & Technol., 31, 2319-2325, 1997.
Krivanek, C.S. Mercury control technologies for MWC’s: The unanswered questions. J. Hazard. Mater. 47 (1-3), 119-136, 1996.
Lahaye, J. The chemistry of carbon surfaces. Fuel, 77(6), 543-547, 1998.
Lee, D.S., Dollard, G.J., Pepler, S. Gas-phase mercury in the atmosphere of the United Kingdom. Atmos. Environ. 32(5), 855-864, 1998.
Lehmann, C.M.B., Rostam-Abadi, M., Rood, M.J. Hsi, H.C. Activated carbon adsorbents from waste tires for air quality control. In Proceedings of A&WMA 92nd Annual Meeting & Exhibition, St. Louis, Missouri, June 20-24, 1999.
Lin, C.J., Pehkonen, S.O. The chemistry of atmospheric mercury: a review. Atmos. Environ. 33(13), 2067-2079, 1999.
Liu, W., Vidic, R.D., Brown, T.D. Optimization of sulfur impregnation protocal for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ. Sci. & Technol. 32, 531-538, 1998.
Lorenzen, L., van Deventer, J.S.J., Landi, W.M. Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 8(4/5), 557-569, 1995.
Merchant, A.A., Petrich, M.A. Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE Journal, 39, 1370-1376, 1993.
Miguel, G.S., Fowler,G.D., Sollars, C.J. Pyrolysis of tire rubber: porosity and adsorption characteristics of the pyrolytic chars. Ind. Eng. Chem. Res. 37, 2430-2435, 1998.
Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochem. Eng. Aspects, 177, 169-181, 2001.
Mugge, J., Bosch, H., Reith, T. Measuring and modelling gas adsorption kinetics in single porous particles. Chem. Eng. Sci. 56, 5351-5360, 2001.
Nakagana, R. Studies on the levels in atmospheric concentrations of mercury in Japan. Chemsophere, 32, 2669-2676, 1995.
Nakagana, R. Estimation of mercury emissions from geothermal activity in Japan. Chemsophere, 38, 1867-1871, 1999.
Ng, J.C.Y., Cheung, W.H., McKay, G. Equilibrium studies for the sorption of lead from effuents using chitosan. Chemosphere, 52, 1021-1030, 2003.
Ogasawara, S., Kuroda, M., Wakao, N. Preparation of activated carbon by thermal decomposition of used automotive tires. Ind. Eng. Chem. Res. 26, 2552-2555, 1987.
Ollero, P., Serrera, A., Arjona, R., Alcantarilla, S. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 81, 1989-2000, 2002.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal D.L., Benson, S.A. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82, 89-165, 2003.
Sakata, M., Marumoto, K. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmos. Environ. 36(2), 239-246, 2002.
Schroeder, W.H. and Munthe, J. Atmospheric mercury- an overview. Atmos. Environ. 32(5), 809-822, 1998.
Senior, C., Chen, Z., Sarofim, A. Mercury oxidation in coal-fired utility boilers: validation of gas-phase kinetic models. In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
Shaub, W.M. Mercury emission from MSW incinerator: an assessment of the current situation in the United States and forecast of future emissions. Res. Conserv. Recycl. 9 (1-2), 31-59, 1993.
Shu, H.T., Li, D., Scala, A.A., Ma, Y.H. Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Sep. Puri. Technol. 11, 27-36, 1997.
Silva Da Rocha, M., Iha, K., C&acirc;ndido Faleiros, A., Jos&eacute; Corat, E., Encarnaci&oacute;n V&aacute;zquez Su&aacute;rez-Iha, M. Freundlich’s isotherm extended by statistical mechanics. J. Colloid Interface Sci. 185, 493-496, 1997.
Sinha, P.K., Walker, P.L. Removed of mercury by sulfurized carbon. Carbon, 10, 754-756, 1972.
Sjostrom, S., Ebner, T., Slye, R. MerCAP: a novel approach for vapor-phase mercury capture. In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
Stenzel, M.H. Removal organics by activated carbon adsorption. Chem. Eng. Prog. April, pp. 36-43, 1993.
Vidic, R.D., Chang, M.T., Thurnau, R.C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbon. J. Air & Waste Manage. Assoc. 48, 247-255, 1998.
W&auml;ngberg, I., Munthe, J., Pirrone, N., Iverfeldt, A., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., G&aring;rdfedlt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., Tuncel, G. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos. Environ. 35(17), 3019-3025, 2001.
Williams,P.T. and Besler, S., Taylor, D.T. The pyrolysis of automotive tyres: the influence of temperature and heating rate on product composition. Fuel, 69, 1474, 1990.
Williams, P.T., Besler, S., Taylor, D.T. The batch pyrolysis of tyre waste-fuel properties of the derived pyrolytic oil and overall plant economics. Proc. Instn. Mech. Eng. 207, 55-63, 1993.
Williams, P.T., Besler, S. Pyrolysis-thermogravemetric analysis of tyres components,” Fuel, 74(9), 1277-1283, 1995.
Xiong, Youhui, Jiang, T., Zou, X. Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace. Thermochim. Acta. 408, 97-101, 2003.
Yoshio, O., Hitoshi, E., Chikao, K., Ichiro, U., Hiroshi, N. Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ. Sci. Technol. 22, 708-711, 1988.
Yu, Y., Koljonen, K., Paulapuro, H. Surface chemical composition of some non-wood pulps. Ind. Crop. Prod. 15, 123-130, 2002.
行政院環境保護署網頁,http://recycle.epa.gov.tw/main.asp,2003(a)。
行政院環境保護署網頁,http://w3.epa.gov.tw/epalaw/index.htm,2003(b)。
劉明翰,粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立,國立中山大學環境工程研究所碩士論文,2001。
蔡木川,石化污泥吸附劑對苯之吸附、脫附影響研究,國立成功大學環境工程研究所碩士論文,2001。
洪旭文,定量結構活性關係法預測活性碳吸附低濃度揮發性有機物之研究,國立成功大學環境工程研究所碩士論文,2000。
吳俊欣,都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試,國立中山大學環境工程研究所碩士論文,2000。
林裕雄,以電動力法處理受三氯乙烯及單氯酚污染粘質土壤之研究,國立中興大學環境工程研究所碩士論文,1999。
袁中新、洪崇軒,以廢輪胎熱裂解產物碳黑製備活性碳應用於都市垃圾焚化爐排放廢氣中汞蒸氣去除之研究,國科會/環保署科技合作研究報告,2000。
郝龍斌,聯合報,http://pei.cjjh.tc.edu.tw/chem_20_3.htm,1999。
張木彬,垃圾焚化爐排氣中重金屬量測及處理效率評估,行政院環境保護署研究報告,1997。
邱正宏, “吸附於活性碳表面揮發性有機物之熱脫附動力學研究”, 國立中山大學環境工程研究所碩士論文, 1993.
楊英傑,以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究,國立成功大學化學工程研究所碩士論文,1992。
劉瑞華,低濃度揮發性有機物在吸附劑中之傳輸與平衡研究,國立成功大學環境工程研究所碩士論文,1998。
謝國煌、何春松,廢輪胎資源利用為輔助燃料,廢輪胎資源化利用技術與策略研討會,1-1~1-24,1996。
蔣本基, “活性碳物理化學特性對VOCs吸附之影響”, 工業污染防治, 第58期, 1996.
蔣本基、張璞, “有機溶劑蒸氣之吸附及脫附研究”, 工業污染防治, 第58期, 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code