Responsive image
博碩士論文 etd-0825104-154316 詳細資訊
Title page for etd-0825104-154316
論文名稱
Title
染整廢水及商用反應性染料(Orange-13,Blue-19)之臭氧與紫外光脫色效應及經濟評估
Effect and Economic Analysis on the UV/Ozone Decolorization of a Dye-finishing Wastewater and Commercial Dyes – Reactive Orange 13 and Blue 19
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-09
繳交日期
Date of Submission
2004-08-25
關鍵字
Keywords
ADMI、色度、紫外光、臭氧、染整廢水、反應性染料
reactive dyes, ozone, color, ADMI, ultraviolet light, dye-finishing wastewater
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
台灣地區染整業廢水所含之色度對整體環境造成嚴重污染,大部分業者採用次氯酸鈉作為主要脫色藥劑,為求能確保符合放流水之色度排放標準(550 ADMI, American Dye Manufactures Institute),業者多加入過量之藥劑,然而過量的使用次氯酸鈉將造成三鹵甲烷等含氯化合物之致癌性物質的產生,進而污染整體環境以及造成人體的危害。有鑑於此,本研究乃著手探討以臭氧及紫外光替代次氯酸鈉作為染整業廢水處理脫色劑之可行性,探討之課題包括脫色效率、經濟效益之分析以及商業化運行之可行性等。臭氧及紫外光被用來作為氧化及消毒的功能由來已久,亦有數篇論文探討其用來處理染整廢水之功能及反應機制,皆有令人滿意的結果。
本研究分成三大主題,第一主題為處理效率之可行性研究,主要探討利用臭氧及紫外光處理染整廢水色度,可否達到法規排放標準之可行性,採3.5公升容積之反應器進行實驗;第二主題針對染整廠排放廢水與染料配製水樣,進行臭氧利用率及紫外光脫色效率差異之比較,採14公升容積之反應器作實驗;第三主題為經濟效益分析,比較使用臭氧及紫外光與使用次氯酸鈉之投資成本、操作費用、維修成本以及投資回報年限等,此部分研究採用較大的50公升容積反應器,以有效達到評估效果。
第一主題探討利用臭氧與紫外光處理經生物分解及化學混凝之染整廠排放水,探討各種操作參數,以符合550 ADMI色度排放標準。實驗結果顯示,放流水的色度可經由臭氧與紫外光處理,在一個小時內從4,000 ADMI降至約200 ADMI;數據顯示在pH = 3時之脫色效率比在pH = 10或pH = 7時顯然為佳,這或許可歸因於臭氧分子在低pH值時為多數優勢,且對廢水中某些特定之發色團分子具有選擇性,而使得於高pH值時佔多數優勢且氧化力高於臭氧之氫氧基的脫色效率相形見絀。實驗結果亦證實臭氧分子經由足夠強度之紫外光照射氧氣與水分子,將可能產生臭氧與氫氧基進而增提升脫色之效率。經上述探討發現,臭氧與紫外光處理方式具備有發展成一種有益環境污染改善之染整廢水色度處理技術之可行性。
第二主題探討臭氧與紫外光處理技術之影響參數,以Orange-13及Blue-19兩種商用反應性染料之色度進行研究。實驗採批次反應,反應器容積為14公升。主要探討pH值、臭氧劑量、反應時間及紫外光強度等控制參數之最佳操作數值及其組合。研究結果顯示臭氧劑量與pH值為主要脫色反應控制參數,而紫外光強度之重要性則相對地較不顯著。色度去除效率之探討則顯示出,在總臭氧劑量100 mg/L之狀況下,Orange-13以及Blue-19兩種染料之色度可以在30分鐘內從2,000 ADMI降至200 ADMI。
第二主題研究結果亦顯示,Blue-19與Orange-13之最佳反應pH值分別為3與10左右。此結果主要肇因於臭氧分子與氫氧基,分別於低pH值及高pH值時顯現出其最佳之氧化能力;再者,分子狀態之臭氧對於某些結構之染料亦具有較佳之選擇性氧化能力,此結果同時也說明了pH值於脫色反應中扮演著相當重要的角色。動力學分析顯示,Orange-13與Blue-19脫色反應依循著一階反應(first order reaction)模式。實驗結果也說明了脫色程度與臭氧之劑量基本上成正比關係,有助於染整廠實廠廢水脫色系統之設計與操作。
第三主題針對經濟效率之分析與探討顯示,以一個日排放污水量800m3 (800CMD)之染整廠為例,其經過生物氧化與化學混凝處理後之污水,採用本研究之臭氧脫色系統所需之投資成本,包括設備費、相關附屬設施以及原有系統之配合修改等費用,約需116,300美元(約新台幣400萬元),而每月之操作與維護費用則需約4,030美元(約新台幣14萬元,折合每m3廢水約新台幣5.83元)。
由於第一及第二主題皆獲致紫外光的照射並非脫色反應主要機制之結論,而且紫外光相關設施於實廠之安裝與操作上有實質上的困難存在。因此,僅以臭氧作為替代性氧化劑與次氯酸鈉進行經濟效益之分析與比較。由於該廠每月使用次氯酸鈉之費用約需5,700美元(約新台幣198,000元),因此,採用臭氧脫色系統每月約可省下1,670美元,總體投資回報年限需超過7年。如此之投資回報年限對於染整廠之業主並不具備足夠之吸引力,然而,考量使用次氯酸鈉可能造成之環境毒性與污染問題,相關單位提出具有吸引業者投資之獎勵措施是有需要的。
Abstract
Currently in Taiwan’s textile-dying industry, sodium hypochlorite (NaOCl) is popularly used as a decolorization oxidant. In order to surely meet the effluent color regulation of 550 ADMI (American Dye Manufactures Institute), excessive dosage of sodium hyperchlorite is commonly used, which results in the increase of residual chloride and the accumulation of toxic chlorinated compound in the environment. This study probes into the characteristics of substitute oxidant for sodium hypochlorite to avoid the production of toxic products. The study includes decolorization efficiency evaluation, economical analysis and feasibility of commercial application.
This study adopts ozone as an oxidant and ultraviolet light as the oxidant enhancer for the purpose of preventing the occurrence of secondary pollution products like trihalomethane from the sodium hyperchlorite application. Literature review indicates that there are several studies for reaction mechanisms of oxidation and disinfection of ozone and ultraviolet light for decolorization and the conclusions reveal much promising results.
There are three topics in this study, which are:
Topic 1: Feasibility study. This study focuses on whether the effluent color concentration of the treatment process meets the color effluent standard or not. A 3.5 L volume reactor was used in this section.
Topic 2: Influencing factor analysis. A 14 L volume reactor was adopted for analyzing the influencing factors for decolorization and for comparing the differences in treatment efficiencies between a dye finishing plant effluent and two commercial dyestuff samples.
Topic 3: Economic analysis. The analysis focuses on economic comparison between NaOCl and UV/Ozone processes for effluent decolorization. Analysis results of the investment cost, operation/maintenance expense, and investment return duration are presented in this section. A 50 L volume reactor was used to achieve the evaluation for this part.
First topic of this study examined some operating parameters for treating effluent from the biological and chemical coagulation units of a dye-finishing wastewater treatment plant using the UV/Ozone technique to meet an effluent regulation of 550 ADMI values could be reduced from approximately 4,000 to 200 ADMI in an hour using the UV/Ozone technique.
The results show that higher color removal efficiency could be achieved at pH values around 3 as compared with higher pH values of around 7 and 10. This might be due to the fact that the predominant ozone molecules at lower pH values are more selective to certain chromophore molecules in wastewater, despite the fact that hydroxyl radicals are predominant at higher pH values and have a stronger oxidation capability than ozone.
The UV light used in this study emitted from the experimental lamp can excite oxygen and water molecules to produce ozone molecules and hydroxyl radicals that can then increase decolorization rate. The findings of this investigation reveal that the proposed UV/Ozone treatment scheme has potential for development into an environmentally friendly decolorization approach for dye finishing wastewater treatment.
The second topic is to investigate the feasibility of applying UV/Ozone techniques to reduce color content caused by two commercial reactive dyes (Orange-13 and Blue-19). Bench experiments were performed using a 14-L reactor. Controlling factors including pH value, dosage of ozone, reaction time, and UV intensity were evaluated to obtain the optimal operating parameters. Results from this study show that the ozone dosage and pH value dominated the effects on the decolorization process. However, UV intensity shows relatively insignificant effects. Results also indicate that the color content could be reduced from 2,000 to 200 ADMI within a reaction time of 30 minutes with a total ozone dosage of 100 mg/L.
This study shows that pH values of approximately 3 and 10 favored the decolorization of the studied Dye Blue-19 and Orange-13, respectively. This was due to the effects that molecular ozone and hydroxyl radicals had significant oxidative power at low and high pH, respectively. Moreover, molecular ozone was more selective to certain dye structures during its oxidation process. This also caused the effect that pH value played an important role on color removal. Kinetic analyses show that the decolorization reactions of Dye Orange-13 and Blue-19 followed a first-order decolorization model. Experimental results also indicate that the degree of decolorization was primarily proportional to the ozone dosage. Results from this study provide us an insight into the characteristics and mechanisms of decolorization by UV/ozone technique. Results will also aid in designing a system for field application of dye finishing plants.
According to the results from the third topic, for a dye finishing plant of wastewater flow rate of 800CMD (m3/day), the capital cost of equipment and related establishment as well as amendment is about US$ 116,300, and the monthly operation and maintenance cost is US$ 4,030. In this study, ozone was used as a substitute decolorizing oxidant to treat the effluent from the secondary biological and physical/chemical treatment plant. Because the current cost for the decolorization oxidant (NaOCl) is approximately US$ 5,700 per month, the monthly saving, adopting the decolorization system using UZ/Ozone, will be US$ 1,670. The investment return period will be over 7 years and is not attractive to the plant owners. However, to prevent the accumulated toxicity of chloride compounds in the environment and to promote the desires of investment on the advanced decolorization technique, a favorable tax deduction policy needs to be applied.
目次 Table of Contents
謝誌 ……………………………………………………………… I
中文摘要 ………………………………………………………… II
ABSTRACT ………………………………………………………… V
LIST OF CONTENTS ……………………………………………… VIII
LIST OF TABLES ………………………………………………… XII
LIST OF FIGURES ………………………………………………… XIII
NOMENCLURATURES ………………………………………………… XV
CHAPTER I INTRODUCTION ……………………………………… 1
1.1 Initiation of the Study…………………………… 1
1.2 Objectives of Research …………………………… 2
1.3 Organization of Dissertation …………………… 2
CHAPTER II LITERATURE REVIEW……………………… 3
2.1 The characteristics of dyestuffs……………… 3
2.2 Mass transfer of ozone…………………………… 5
2.3 The effluent regulation of dye finishing plants in Taiwan… 6
2.4 Analytical methods and characteristics of color, ozone and UV 6
2.4.1 Color………………………………………… 6
2.4.2 Ozone concentration……………………… 7
2.4.3 UV light intensity………………………… 7
2.5 Treatment methods for color pollution of textile wastewater… 8
2.5.1 Coagulation, flocculation and precipitation… 8
2.5.2 Oxidation techniques……………………… 9
2.5.3 Adsorption
2.5.4Electrolysis………………………………… 12
2.5.5 Biological treatments…………………… 12
2.5.6 Membrane techniques……………………………13
2.6 Conclusion………………………………………… 14
CHAPTER III EVALUATION OF SELECTED OPERATIONAL PARAMETERS FOR THE DECOLORIZATION OF DYE-FINISHING WASTEWATER USING UV/OZONE ………………………………… 16
3.1 Introduction ……………………………………… 16
3.2 Experimental Setup and Operation……………… 18
3.3 Results and Discussion …………………………… 22
3.3.1 Effect of pH ………………………………… 22
3.3.2 Effect of Ozone Dosage and UV Intensity 26
3.3.3 Effect of Purging Gas…………………… 28
CHAPTER IV APPLICATION OF UV/OZONE ON THE DECOLORIZATION OF COMMERCIAL DYES-REACTIVE ORANGE-13 AND BLUE-19 ………………………………………………… 31
4.1 Introduction ……………………………………… 31
4.2 Experimental Setup and Operation……………… 32
4.3 Results and Discussion………………………… 35
4.3.1 Effect of Ozone Dosage……………………35
4.3.2 Effect of UV Light Intensity ……………38
4.3.3 Effect of pH Value……………………… 41
4.3.4 Comparison of reactive dyes and dye finishing plant effluent ………………………………… 45
4.3.5 Calculation of Rate Constant (k) …… 45
CHAPTER V ECONOMIC ANALYSIS ON DECOLORIZATION OFDYE FINISHING WASTEWATER USING UV/OZONE………………………………………………… 48
5.1 Introduction …………………………………… 48
5.2 Experimental Setup and Operation…………… 50
5.3 Results and Discussion…………………………… 53
5.3.1 Decolorization Evaluation to Meet Effluent Standard … 53
5.3.2 Utilization of Ozone………………………56
5.3.3 Cost Estimation………………………… 56
5.3.4 Economic Analysis ………………………… 58
CHAPTER VI CONCLUSIONS………………………………… 60
APPENDIX A REFERENCES……………………………………… 63
APPENDIX B SUMMARY OF RELATED DATA………………………… 69
AUTHOR’S PUBLICATION LIST………………………………… 97
作者簡歷 ………………………………………………………… 99
參考文獻 References
Adams, C. D., Fusco, W. and Kanzelmeyer, T. (1995), “Ozone, Hydrogen Peroxide/Ozone and UV/Ozone Treatment of Chromium-and Copper-Complex Dyes : Decolorization and Metal Release”, Ozone Sci. & Engrg., Vol. 17, pp. 149-162.
Alborzfar, M., Escande, K., and Allen, S. J. (2000), “Removal of 3,4-Dichlorobut-1-ene Using Ozone Oxidation”, Wat. Res., 34(11): 2963-2970.
American Public Health Association. (1980), Standard Methods for The Examination of Water And Wastewater, 16th ed., Washington, D. C.
AWWA Research Foundation. (1989), “Advanced Oxidation Processes for Control of Off-Gas Emissions from VOC Stripping”, AWWA Research Foundation .
Benitez, F. J., Acero, J. L., Gonzalez, T. and Garcia, J. (2002), “Application of Ozone and Advanced Oxidation Processes to the Treatment of Lye-Wastewater from the Table Olives Industry”, Ozone Sci. Engrg., 24, 105-116.
Beszedits, S. (1980), “Ozonation to Decolor Textile Effluents”, Am. Dyest. Rep., 69(8), 37-40.
Easton, J. (1998), “The Dye Maker’s View”, Am. Dyest. Rep., 87(8), 9-21.
Bruno, L., Reckhow, D. A. and Brink, D. R. (1991), Ozone in Water Treatment Application And Engineering, Lewis Publishers Inc.
Chiang, P. C. (1993), “Effects of Alternative Disinfactants on The Formation of Hazardous Materials in Drinking Water”, Annual Report of National Science Council of Taiwan, ROC, 23-29, NSC-82-0410-E002-036.
Chu, W. and Ma, C. W. (2000), “Quantitative Prediction of Direct and Indirect Dye Ozonation Kinetics”, Wat. Res., 34(12): 3153-3160.
Cooper, C. and Burch, R. (1999), “An Investigation of Catalytic Ozonation for the Oxidation of Halocarbons in Drinking Water Preparation”, Wat. Res., 33(18), 3695-3700.
Fung, P. C., Huang, Q., Tsui, S. M. and Poon, C. S. (1999), “Treatability Study of Organic and Color Removal in Desizing/Dyeing Wastewater by UV/US System Combined with Hydrogen Peroxide”, Wat. Sci. Tech., 40(1), 153-160.
Gähr, F., Hermanutz, F. and Oppermann, W. (1994), “Ozonation-An Important Technique to Comply with New German Laws for Textile Wastewater Treatment”, Wat. Sci. Tech., 30(3): 255-263.
Gansen, R., Boardman, G. D. and Michelsen, D. (1994), “Fate of azo dyes in sludges”, Wat. Res., 28(6), 1367-1376.
Goldstein, F. and Ozonbildung, C. (1903) Ueber Ozonbildung, Chemishe Berichte, 36, 3042.
Hassan, M. M. and Hawkyard, C. J. (2002), “Effect of Dyebath Additives on Decolorization Efficiency in the Ozonation of Dyehouse Effluent”, Ozone Sci. Engrg., 24, 181-191.
Hazel, B., (1998), “Industry Evaluation of Color Reduction and Removal – the DEMOS Project”, Am. Dyest. Rep., 87(8), 59-72.
Hesse, S., Kleiser, G. and Frimmel, F. H. (1999), “Characterization of Refractory Organic Substances(ROS) in Water Treatment”, Wat. Sci. Tech., 40(9), 1-7.
Hoigne, J. and Bader, H. (1983), “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in water. I. Non Dissociating Organic Compounds”, Wat. Res., 17, 173-184.
Hsu, Y. C., Chen, J. T. and Yang, H. C. (2001), “Decolorization of Dyes Using Ozone in a Gas-induced Reactor”, AlChE Journal, 42(11), 169-176.
Hsu, Y. C. and Fang, C. F. (1996), “Treatment of Aqueous Dye Solutions in A New-type Induced 0zonator”, Proc. 21th Conf. on Wastewater Treatment Technol., Taiwan., 148-154.
Ince, N. H . and Tezcanli, G. (1999), “Treatability of Textile Dye-Bath Effluents by Advanced Oxidation : Preparation for Reuse”, Wat. Sci. Tech., Vol. 40, No. 1, pp. 183-190.
Kang, S. F. and Chang, H. M. (1997), “Coagulation of Textile Secondary Effluents with Fenton’s Reagent”, Wat. Sci. Tech., 36(12): 215-222.
Kao, C. M., Chou, M. S., Fang, W. L., Liu, B. W. and Huang, B. R. (2000), “Regulating Colored Textile Wastewater by 3/31 Wavelength Admi Methods in Taiwan”, Chemosphere, 3611, 1-9.
Koyuncu, I. And Afsar, H. (1996), “Decomposition of Dyes in the Textile Wastewater with Ozone”, J. Environ. Sci. Health A31(5), 1035-1041.
Ku, Y. and Wang L. K. (2002), “Decomposition of 2-Chlorophenol in Aqueous Solutions by Ozone and UV/Ozone Processes in the Presence of t-Butanol”, Ozone Sci. Engrg., 24, 133-144.
Lenard, P. and Wirkungen, C. (1900), “Des Ultravioletten Lichtes auf Gasformige Korper”, Annalen fur Physik, 1, 486.
Liakou, S., parlou, S. and Lyberatos, G. (1997), “Ozonation of Azo Dyes”, Wat. Sci. Technol., 35(4), 279-286.
Liu, B.W., Chou, M.S., Kao, C.M., Huang, B.R. and Chen T. Y. (2003), “Application of Ozone/UV on the Decolorization of Commercial Dyes-Reactive Orange-13 and Blue-19”, IWA Asia-pacific Regional Conference, Session F, 2Q3F04.
Liu, B.W., Chou, M.S., Kao, C.M. and Huang, B.R. (2002), “Economic Analysis on Decolorization of Dye Finishing Wastewater Using UV/O3, IWA 3rd Water Congress”, April, Melbourne.
Liu, B. W., Chou, M. S., Kao, C. M. and Huang, B. J. (2002), “Evaluation of the Optimal Operational Parameters for the Decolorizaton of Dye Finishing Wastewater Using Ozone/UV”, Proceedings of the International Conference of Ozone Sci. Engrg. : Environmental Processes and Technological Applications, 306-313.
Lin, S. H. and Lai, C. L. (2000), “Kinetic Characteristics of Textile Wastewater Ozonation in Fluidized and Fixed Activated Carbon Beds”, Wat. Res., 34(3), 763-772.
Lin, S. H. and Chen, M. L. (1997), “Treatment of Textile Wastewater by Chemical Methods for Reuse”, Wat. Res., 31(4): 868-876.
Lin, S. H. and Liu, W. Y. (1994), “Continuous Treatment of Textile Wastewater by Ozonation And Coagulation”, J. Environ. Engrg., 120(2), 437-445.
McGregor, F. R., Piscaer, P. J. and Aieta, E. M. (1988), “Economics of Treating Waste Gases from an Air Stripper Tower Using Photochemically Generated Ozone”, Ozone Sci. Engrg., 10, 339-352.
McKay, G. (1990), Color Removal by Adsorption, Am. Dyest. Rep., 69, 38-51.
Mock, B. and Hamouda, H. (1998), “Ozonation Application to Color Destruction of Industrial Wastewater- part I: Experimental”, Am. Dyest. Rep., 87(8), 18-22.
Nebel, C. and Stuber, L. M. (1976), “Ozone Decolorization of Secondary Dye-laden Effluents, Proc. 2nd Int. Symp. on Ozone Technology”, Pan-American Group of Int. Ozone Assoc., 1, 336-358.
Perkins, W. S., Judkins, J. F. and Perry, W. D. (1980), “Renovation of Dyebath Water by Chlorination or ozonation, Part 1, Text. Chem. Color”. 12(8), 182-187.
Perkowski, J., Kos, L. And Ledakowicz, S. (1996), “Application of Ozone in Textile Wastewater Treatment”, Ozone Sci. Engrg., 18, 73-85.
Perkowski, J., Kos, L. And Ledakowicz, S. (2000), “Advanced Oxidation of Textile Wastewater”, Ozone Sci. Engrg., 22, 535-550.
Sevimli, M. F., Sarikaya, H. Z. and Yazgan, M. S. (2003), “A New Approach to Determine the Practical Ozone Dose for Color Removal from Textile Wastewater”, Ozone Sci. Engrg., 25, 137-143.
Shechter, H. (1973), “Spectrophotometric Method for Determination of Ozone in Aqueous Solutions”, Wat. Res., 7, 729-739.
Snider, E. H. and Porter, J. J. (1974), “Ozone Destruction of Selected Dyes in Wastewater”, Am. Dyest. Rep., 63(8), 36-48, 60.
Southern, T. G. (1998), “Technical solutions to the color problem : a critical review”, Am. Dyest. Rep., 87(8), 73-90.
Takahashi, N., Nakai, T. and Satoh, Y. (1999), “Variation of Organic Halide Formation Potential of Dyestuffs during Ozonation and Correlation with color”, Ozone Sci. Engrg., 21, 487-500.
Yu, Y. H. (1996), “Reaction of Chlorophenols with Ozone Generated in An Aqueous Phase”, Annual Report of National Science Council of Taiwan, ROC, 5-11, NSC-85-2221-E002-045.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.90.141
論文開放下載的時間是 校外不公開

Your IP address is 18.116.90.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code