Responsive image
博碩士論文 etd-0825106-085505 詳細資訊
Title page for etd-0825106-085505
論文名稱
Title
低溫燒結氧化鋅變阻器粉體配方及熱處理條件之研究
The Studies of Powder Formulation and Thermal Treatment Parameters of Low Firing ZnO-based Varistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-08-25
關鍵字
Keywords
變阻器、氧化鋅、氧化釩
varistor, ZnO, V2O5
統計
Statistics
本論文已被瀏覽 5702 次,被下載 10
The thesis/dissertation has been browsed 5702 times, has been downloaded 10 times.
中文摘要
本研究探討低溫燒結積層氧化鋅變阻器所需之粉體配方及熱處理條件;以V2O5為電性成型劑,並以氧化錳、氧化鈷及其他氧化物做為電性修飾劑,探討各添加劑扮演的角色,及其對氧化鋅電特性之影響。同時,本研究亦探討粉體之熱處理條件對氧化鋅低溫共燒之影響。
由本研究的結果可知,V2O5確實可使ZnO變阻器以900℃之低溫來完成燒結;另外,適當地延長燒結時程亦可得到更低溫的燒結溫度,若同時搭配夠小之ZnO粒徑的話,將使得內外電極及陶瓷體共燒的可能性更大。粉體配方以Mn3O4添加量為0.3mol%、CoO添加量為0.5mol%及Bi2O3添加量為0.1mol%時可得到較佳的α值(24)及最低之漏電流值(2μA)。實驗過程中亦發現粉體之熱處理過程關係到V2O5系統之ZnO變阻器能否保持積層化產品燒結後的狀態,未經熱處理或是不當的熱處理將使得共燒之內電極收縮過大甚至消失;結果顯示熱處理溫度約350~400℃並配合較長之熱處理時程(4小時以上),將可改善內電極與陶瓷共燒後的狀態。
Abstract
In this thesis, the powder formation and thermal treament parameters for low temperature firing of zinc oxide(ZnO) based multi-layered varistors are studied. Vanadium oxide(V2O5) was used as electrical former, and manganese oxide(MnOx), coblt oxide(CoOx) and other additives were used as electrical modifiers. The object of this thesis is to investigate the effects of additives on the electrical characteristics of ZnO varistors. Meanwhile, the parameters of thermal treament process of raw materials on the effects of low temperature cofiring of ZnO varistors are also studied.
As a result, we found that V2O5 can lower the sintering temperature of ZnO-based varistor as low as 900℃. Forthuremore, prolonged sintering duration and reduced ZnO particle size might lower the sintering temperature futher to a given temperature which makes it possible to co-fire the ceramic body, inner electrodes and outer electrodes. The formulation of powder with added 0.3mol%Mn3O4, 0.5mol%CoO and 0.1mol%Bi2O3 can obtain a high αvalue of 24 and leakage current of 2μA. Besides, we also found that the thermal treament of powder can affect the shrinkage or diffusion of inner electrodes in multi-layered ZnO varistor shape dramastically. Without thermal treament or inproper thermal treament conditions will cause the inner electrode over-shrinkaged or even disppeared. According to the results of experiment, 350~400℃and a longger period (4 hours and above) will improve the phenomenon of over -shrinkaged.
目次 Table of Contents
誌謝 i
摘要 ii
目錄 v
圖表目錄 vii
第一章 前言 1
1.1 研究背景 1
1.1.1 ZnO變阻器介紹 1
1.2 研究動機 3
第二章 基礎背景 5
2.1 變阻器理論基礎 5
2.1.1 ZnO變阻特性形成機制 5
2.2 粉體配方 5
2.2.1 電性成型劑系統與V2O5介紹 5
2.2.2 電性修飾劑 8
2.3 積層式陶瓷元件製造流程介紹 9
第三章 實驗步驟與方法 11
3.1 粉體配方部份 11
3.1.1 MnOx及CoOx價數對電性之影響 11
3.1.2 燒結條件 12
3.1.3 其他電性修飾劑 12
3.2 粉體熱處理部份 13
3.2.1 煅燒溫度 13
3.2.2 煅燒時程 14
第四章 結果與討論 15
4.1 粉體配方部份 15
4.1.1 MnOx及CoOx價數對電性之影響 15
4.1.2 燒結條件 17
4.1.3 其他電性修飾劑 17
4.2 粉體熱處理部份 19
4.2.1 煅燒溫度 19
4.2.2 煅燒時程 19
第五章 結論 21
參考文獻 23
參考文獻 References
[1] T.K. Gupta, Application of zinc oxide varistors, J. Am. Ceram. Soc., vol.73, issue.7, pp.1817-1840, 1990

[2] M. Mutsuoka, Nonohmic properties of zinc oxide ceramics, Jpn. J. Appl. Phys., vol.10, no.6, pp.736-746, 1971

[3] L.M. Levinson and H.R. Philipp, Zinc oxide varistors-a review, Ceramic Bulletin, vol.65, no.4, pp.639-646, 1986

[4] D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc., vol.82, issue.3, pp.485-502, 1992

[5] J.K. Tsai and T.B. Wu, Non-ohmic characteristics of ZnO-V2O5 ceramics, J. Appl. Phys., vol.76, no.8, pp.4817-4822, 1994

[6] J.K. Tsai and T.B. Wu, Microstructure and nonohmic properties of ZnO-V2O5 ceramics, Jpn. J. Phys. vol.34, no.12A, pp.6452-6457, 1995

[7] J.K. Tsai and T.B. Wu, Microstructure and nonohmic properties of binary ZnO-V2O5 ceramic sintered at 900℃, Materials Letters, vol.26, pp. 199-203, 1996

[8] C.S. Chen, C.T. Kuo, T.B. Wu and I-Nan Lin, Microstructures and electrical properties of V2O5-based multicomponent ZnO varistors prepared by microwave sintering process, Jpn. J. Appl. Phys., vol.36 pp.1169-1175, 1997

[9] H.H. Hng and K.Y. Tse, Grain growth of ZnO in binary ZnO-V2O5 ceramics, J. Mater. Sci., vol.38, pp. 2367-2372, 2003

[10] H.H. Hng and L. Halim, Grain growth in sintered ZnO-1mol% V2O5 ceramics, Materials Letters, vol.57, pp.1411-1416, 2003

[11] C.T. Kuo, C.S. Chen and I.N. Lin, Microstructure and nonlinear properties of microwave-sintered ZnO-V2O5 varistors: I, effect of V2O5 doping, J. Am. Ceram. Soc., vol.81, issue.11, pp.2942-48, 1998

[12] C.T. Kuo, C.S. Chen and I.N. Lin, Microstructure and nonlinear properties of microwave-sintered ZnO-V2O5 varistors: II, effect of Mn3O4 doping, J. Am. Ceram. Soc. vol.81, issue.11, pp.2949-56, 1998

[13] C.S. Chen, Effect of the valence-state of Mn-ions on the microstructures and nonlinear properties of microwave sintered ZnO-V2O5 varistors, 華夏學報第36期, pp.15459-15471

[14] H.H. Hng and P.L. Chan, Effects of MnO2 doping in V2O5-doped ZnO varistor system, Materials Chemistry and Physics, vol.75, pp.61-66, 2002

[15] H. Pfeiffer and K.M. Knowles, Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO-rich MnO2-V2O5-ZnO varistors, J. European Ceram. Soc., vol.24, pp.1199-1203, 2004

[16] H.H. Hng and P.L. Chan, Microstructure and current-voltage characteristics of ZnO-V2O5-MnO2 varistor system, Ceramics International, vol.30, pp.1647-1653, 2004

[17] H.H. Hng and K.M. Knowles, Characterization of Zn3(VO4)2 phases in V2O5-doped ZnO Varistors, J. European Ceram. Soc., vol.19, pp. 721-726, 1999

[18] H.H. Hng and K.M. Knowles, Microstructure and current-voltage characteristics of multicomponent vanadium-doped zinc oxide varistors, J. Am. Ceram. Soc., vol.83, issue.10, pp.2455-62, 2000

[19] H.H. Hng, K.M. Knowles, P.A. Midgley and T. E. Mitchell, Zinc vanadates in vanadium oxide-doped zinc oxide varistors, J. Am. Ceram. Soc., vol.84, issue.2, pp.435, 2001

[20] J. Han, A.M.R. Senos and P.Q. Mantas, Nonisothermal sintering of Mn doped ZnO, J. European Ceram. Soc., vol.19, pp. 1003-1006, 1999

[21] J. Han, P.Q. Mantas and A.M.R. Senos, Grain growth in Mn-doped ZnO, J. European Ceram. Soc., vol.20, pp. 2753-2758, 2000

[22] J. Han, A.M.R. Senos and P.Q. Mantas, Deep donors in polycrystalline Mn-doped ZnO, Materials Chemistry and Physics, vol.75, pp.117-120, 2002

[23] J. Han, A.M.R. Senos and P.Q. Mantas, Varistor behaviour of Mn-doped ZnO ceramics, J. European Ceram. Soc., vol.22, pp. 1653-1660, 2002

[24] Y.W. Hong and J.H. Kim, The electrical properties of Mn3O4-doped ZnO, Ceramics International, vol.30, pp.1301-1306, 2004

[25] E.D. Kim, C.H. Kim and M. HwanOh, Role and effect of Co2O3 additive on the upturn characteristics of ZnO varistors, J. Appl. Phys., vol.58, no.8, pp. 3231-3235, 1985

[26] A. Miralles, A. Cornet, A. Herms and J.R. Morante, The influence of Cobalt on the electrical characteristics of ZnO ceramics, Materials Science and Engineering, A109, pp. 201-205, 1989

[27] T.R.N. Kutty and S.E. Valavan, Influence of alkali ions in enhancing the nonlinearity of ZnO-Bi2O3-Co3O4 varistor ceramics, Jpn. J. Appl. Phys., Vol.34, pp.6125-6132, 1995

[28] W. Onreabroy, T. Tunkasiri and N. Sirikulrat, Effects of alumina surrounding in sintering process on ZnO-Bi2O3 varistor doped with CoO, Materials Letters , vol.59, pp.283-288, 2005

[29] C.W. Nahm, Influence of praseodymium oxide/cobalt oxide ratio on microstructure and electrical properties of zinc oxide varistor ceramics, Materials Chemistry and Physics vol.80, pp. 746-751, 2003

[30] K. Mukae, K. Tsuda and I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics, Jpn. J. App. Phys., vol.16, no.8, pp.1361-1368, 1977.

[31] A. Smith, J.F. Baumard, P. Abelard and M.F. Denanot, ac impedance measurements and V-I characteristics for Co-, Mn-, or Bi- doped ZnO, J. Appl. Phys., vol.65, no.12, pp. 5119-5125, 1989

[32] Y.C. Chen, C.Y. Shen and L. Wu, Grain growth processes in ZnO varistors with various valence states of manganese and cobalt, J. Appl. Phys., vol.69, no.12, pp. 8363-8367, 1991

[33] Y.C. Chen, C.Y. Shen, H.Z. Chen, Y.F. Wei and L. Wu, Grain growth and electrical properties in ZnO varistors with various valence states of additions, Jpn. J. Appl. Phys., vol.30, no.1, pp. 84-90, 1991

[34] C.Y. Shen, L. Wu and Y.C. Chen, Effect of Additions on Conduction Properties of ZnO Varistors, Jpn. J. Appl. Phys., vol.32, pp.2043-2046, 1993

[35] S. Ezhilvalavan and T.R.N. Kuyty, Dependence of non-linearity coefficients on transition metal oxide concentration in simplified compositions of ZnO+Bi2O3+MO Varistor ceramics (M=Co or Mn), J. Mater. Sci.: Material In Electronics, vol.7, pp. 137-148, 1996

[36] G.Y. Sung and C.H. Kim, Anisotropic grain growth of ZnO grain in the varistor system ZnO-Bi2O3-MnO-TiO2, Advanced Ceramic materials, vol.3, no.6, pp.604-606, 1998

[37] Y.W. Hong and J.H. Kim, Impedance and admittance spectroscopy of Mn3O4-doped ZnO incorporated with Sb2O3 and Bi2O3, Ceramics International, vol.30, pp. 1307-1311, 2004

[38] C.H. Kim and J.H. Kim, Microstructure and electrical properties of ZnO-ZrO2-Bi2O3-M3O4 (M=Co, Mn) varistors, J. European Ceram. Soc.,vol.24, pp. 2537-2546, 2004

[39] 徐錦志, 曾偉雄, Effect of NiO on the Grain-Size Distribution of TiO2-Doped ZnO Varistors, 大同材料,第7期, pp.183-190, 82年6月

[40] W.G. Carlson and T.K. Gupta, Improved Varistor nonlinearity via donor impurity doping, J. Appl. Phys., vol. 53, no.8, pp. 5746-5753, 1982

[41] Y. Satoi and S. Yoshikado, Effects of Addition of Al on Electrical Degradation of ZnO Varistors, 2003 Trans Tech Publications,Switzerland

[42] M. Houabes, S. Bernik, C. Talhi and A. Bui, The Effect of aluminium oxide on the residual voltage of ZnO Varistors, Ceramics International, vol.31 pp.783-789, 2005

[43] J. Fan and R. Freer, The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors, J. Appl. Phys, vol.77, no.9, pp.4795-4800, 1995

[44] S.W. Han, J.L. He, H.G. Cho, Y.P. Tu and R. Zeng, Influence of Chromium Oxide Additive Electrical Characteristics of ZnO Varistor, Proceeding of the 6th international conference on properties and applications of dielectric materials, June 2000, pp957-960

[45] S. Bernik, P. Zupancic and D. Kolar, Influence of Bi2O3/TiO2, Sb2O3 and Cr2O3 doping on low-voltage varistor ceramics, J. European Ceram. Soc., vol19, pp.709-713, 1999

[46] C. Zhang, Y. Hu, W. Lu, M. Cao and D. Zhou, Influence of TiO2/Sb2O3 ratio on ZnO varistor ceramics, J. European Ceram. Soc., vol.22, pp.61-65, 2002

[47] S. Bernik, S. Macek and A. Bui, The characteristics of ZnO-Bi2O3-based varistor ceramics doped with Y2O3 and varying amounts of Sb2O3, J. European Ceram. Soc., vol.24, pp.1195-1198, 2004

[48] J. Kim, T. Kimura and T. Yamaguchi, Sintering of Sb2O3-doped ZnO, Journal of Materials Science, vol.24, pp.213-219, 1989

[49] S. bernik, S. Macek and B. Ai, Microstructural and electrical characteristics of Y2O3-doped ZnO-Bi2O3-based varistor ceramics, J. European Ceram. Soc., vol.21, pp.1875-1878, 2001

[50] 林居南, 高至鈞, 氧化錫添加對低壓氧化鋅變阻器之影響, 粉末冶金會刊第20卷第4期, pp.214-219, 1992年12月

[51] N. Daneu, A. Recnik, S. Bernik, D. Kolar and W.E Lee, Microstructural development in SnO2-doped ZnO-Bi2O3 ceramics, J. Am. Ceram. Soc., Vol.83, Issue.12, pp.3165-3172, 2000

[52] J.U. Lee, K.O. Chang, C.B. Park and S. Grzybowski, The thermally stimulated current in zinc oxide varistors with TiO2 additives, Proceeding of the 3rd international conference on properties and applications of dielectric materials, pp.502-504, issue.8-12, 2000

[53] 曾啟光, 林和龍, 添加鉍硼玻璃氧化鋅的燒結性與電性, Chinese Journal of Materials Science, vol.30, No.1, pp.43-48, 1998

[54] 蔡志光, 釩基氧化鋅變阻性質之研究以及多層元件之應用, 博士論文, 1996年
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.187.103
論文開放下載的時間是 校外不公開

Your IP address is 3.144.187.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code