Responsive image
博碩士論文 etd-0825106-154239 詳細資訊
Title page for etd-0825106-154239
論文名稱
Title
二硒化銅銦薄膜硫化轉換製程之研究
A Study of Sulfide Conversion Process of CuInSe2
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-19
繳交日期
Date of Submission
2006-08-25
關鍵字
Keywords
轉換、硫化、二硫化銅銦、二硒化銅銦、硒化亞銅
Cu2Se, CuInSe2, CuInS2, Sulfurization, Conversion
統計
Statistics
本論文已被瀏覽 5734 次,被下載 3677
The thesis/dissertation has been browsed 5734 times, has been downloaded 3677 times.
中文摘要
二硒化銅銦薄膜在元素態硫蒸氣氣氛下退火處理後可以完全轉換成二硫化銅銦。本論文利用分子束磊晶系統,將二硒化銅銦薄膜試片曝露於加熱的硫源瓶,以完成硫化轉換製程。實驗結果顯示,1微米厚的二硒化銅銦薄膜在硫分子束通量4.5×1016 原子/公分2-秒,且於基板溫度450℃退火處理5分鐘條件下,可完全轉換成二硫化銅銦。在此退火溫度下,比較其他的文獻報告之完全硫化轉換所需時間,本結果是最短的一個。影響硫化轉換速度的因素包括硫蒸氣通量、薄膜結晶性以及原始薄膜化學組成,其中又以原始薄膜化學組成最為重要。富銅含量之二硒化銅銦薄膜中會伴隨有二次相硒化亞銅出現,此二次相會加速硫化轉換製程之速度,富銅含量之二硒化銅銦薄膜試片經由氰化鉀溶液蝕刻移除二次相硒化亞銅後,可發現其硫化轉換速度明顯減緩。本研究也提出二次相硒化亞銅在硫化轉換製程機制所扮演之角色。
Abstract
Thin films of CuInSe2 can be completely converted into CuInS2 after annealing in elemental sulfur vapor. In this thesis, the sulfide conversion process was done in an MBE chamber and the film was exposed to a heated sulfur source. Our experiments showed that complete conversion of a 1.0 μm-thick CuInSe2 film into CuInS2 was achieved when the film was annealed in a sulfur beam flux of 4.5x1016 atoms/cm2-sec at 450℃ for 5 minutes. This is the shortest conversion time ever reported for the same annealing temperature. The speed of conversion process depended on sulfur vapor flux, film crystallinity, and original film composition. Among them, the film composition was the most important factor. The presence of Cu2Se phase in Cu-rich CuInSe2 film enhances the sulfide conversion process and confirmed by KCN etching of a Cu-rich sample. The role of Cu2Se phase in sulfide conversion was investigated. The sulfide conversion mechanism also presented in this work.
目次 Table of Contents
TABLE OF CONTENTS
ABSTRATE
LIST OF FIGURE………………………………………………VII
LIST OF TABLE…………………………………………….XI

CHAPTER 1 INTRODUCTION 1
1.1 Device Physics-How does a Solar Cell Work 1
1.2 The Structure of Thin Film Solar Cell 4
1.2.1 Substrate Solar Cell-CIGS Solar Cell 5
1.2.2 Superstrate Solar Cell-CdTe and a-Si Solar Cell 11
1.3 Recent Progress in Photovoltaics 12
1.4 A Brief Review of CuInSe2 Deposition Processes 14
1.5 Motivation for sulfurization of CIS-based films 17
1.5.1 Decreased losses by sulfur grading 18
1.6 Purposes of this thesis 20
CHAPTER 2 GROWTH AND CHARACTERISTICS 37
2.1 Molecular Beam Epitaxy Growth System 37
2.2 Substrate cleaning 39
2.3 Thin Film Growth 42
2.3.1 CuInSe2 film 42
2.3.2 Sulfide conversion process 43
2.4 Characterization methods of thin films 44
CHAPTER 3 RESULTS AND DISCUSSION 65
3.1 The growth of CuInSe2 films 65
3.2 The effect of second phases 66
3.3 Sulfide Conversion Process 67
Chapter 4 SULFIDE CONVERSION MODELING 92
4.1 Proposed conversion model 92
4.2 Modified conversion model 93
Chapter 5 CONCLUSION 104
參考文獻 References
Chapter1
References

1. M.A. Contreras, H. Wiesner, D. Niles, K. Ramanathan, R. Matson, J. Tuttle, J. Keane, and R. Noufi, Defect chalcopyrite Cu(In1-xGax)3Se5 materials and high Ga-content Cu(In,Ga)Se2-based solar cells. Photovoltaic Specialists Conference, 1996. Conference Record of the Twenty Fifth IEEE: p. 809-812.
2. A.L. Fahrenbruch and a.R.H. Bube, Fundamentals of solar cells. 1983, New York-London: Academic Press.
3. D. Liao and A. Rockett, Cu depletion at the CuInSe2 surface. APPLIED PHYSICS LETTERS, 2003. 82(17): p. 2829.
4. S.-H. Wei, S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. JOURNAL OF APPLIED PHYSICS, 1999. 85(10): p. 7214-7218.
5. A.N. Tiwari, A. Romeo, D. Baetzner, and H.Zogg, Flexible CdTe solar cells on polymer films. PROG. PHOTOVOLT: Res. Appl., 2001. 9: p. 211-215.
6. A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, and A.M. Hermann, Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors. Solar Energy Materials and Solar Cells, 1996. 41-42: p. 247-260.
7. D.M. Chapin, C.S. Fuller, and G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys., 1954. 25: p. 676.
8. M.A. Green, K. Emery, D.L. King, Y. Hisikawa, and W. Warta, Solar Cell Efficiency Tables ( Version 27 ). Progr. Photovolt: Res. Appl., 2006. 14: p. 45-51.
9. W. Shockley and H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961. 32: p. 510.


10. T. Tiedje, E. Yablonovitch, G.C. Cody, and B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Dev., 1984. ED-31: p. 711.
11. R. Brendel, J.H. Werner, and H.J. Queisser, Thermodynamic efficiency limits for semiconductor solar cells with carrier multiplication. Sol. Energy Mater. Sol. Cells, 1996. 41/42: p. 419.
12. P.D. Maycock, International photovoltaic markets, developments and trends forecast to 2010. Proc. of 24th IEEE photovoltaic Spec. Conf., 1994: p. 694.
13. K.A. Emery and C.R. Osterwald, Current Topics in Photovoltaics, ed. T.J. Coutts and J.D. Meakin. 1988, New York: Academic Press. 301 349.
14. A. Rothwarf. in Proc. 18th IEEE Photovoltaic Specialists Conf. 1986. New York: IEEE.
15. R.D. Wieting. Proc. 13th NREL Photovoltaics Program Review, ed. H.S. Ullal and C.E. Witt. Vol. 353. 1995, New York: AIP Conf. Proc. 19.
16. M.A. Green, K. Emery, D.L. King, S. Igari, and W. Warta, Solar Cell Efficiency Tables ( Version 21 ). Progr. Photovolt: Res. Appl., 2003. 11: p. 39.
17. J.L. Shay, B. Tell, H.M. Kasper, and L.M. Schiavone, Phys. Rev. B, 1973. 7: p. 4485.
18. J. Loferski, J. Shewwhun, B. Rocssler, R. Beaulien, L. Piekoszewski, M. Gorska, and G. Chapman, Investigation of thin film cadmium sulfide/mixed copper ternary heterojunction photovoltaic cells. 13th IEEE PVSC, 1978: p. 190.
19. D. Tarrant and J. Ermer, I-III-VI2 multinary solar cells based on CuInSe2. 23th IEEE PVSC, 1993: p. 372.
20. L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, and F.R. White, J. Vac. Sci. Technol., 1976. 13: p. 139.
21. E.R. Don, R.R. Cooper, and R. Hill. in Proc. 6th European Photovoltaic Solar Energy Conf. 1985. The Netherlands.
22. S. Yamanaka, M. Konagai, and K. Takahashi, J. J. Appl. Phys., 1989. 28: p. L1337.
23. B.H. Tseng and C.A. Wert, J. Appl. Phys., 1989. 65: p. 2254.
24. G.K. Padam, G.L. Malhotra, and S.K. Gupta, Solar Energy Materials, 1991. 22: p. 303.
25. C. Rincon, C. Bellabarba, J. Gonzalez, and G.S. Perez, Optical properties and characterization of CuInSe2. Solar Cells, 1986. 16: p. 335.
26. B. Tell, J.L. Shay, and H.M. Kasper, J. Appl. Phys., 1972. 43: p. 2469.
27. Ramanathan K, Contreras MA, Perkins CL, Asher S, Hasoon FS, Keane J, Young D, Roberto M, Metzger W, Noufi R, Ward J, and D. A., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. PROG. PHOTOVOLT: Res. Appl., 2003. 11: p. 225-230.
28. L.L. Kazmerski, Photovoltaics : a review of cell and module technologies. Renewable and Sustainable Energy Reviews, 1997. 1: p. 71.
29. J.U. Ruhle and R.D. Wieting. Characterizing and controlling Cu/(In+Ga) ratio during CIS menufacturing. in 28th IEEE Photovoltaic Specialist Conference. 2000.
30. A. Catalano, Polycrystalline thin-film technologies: status and prospects. Sol. Energy Mater. Sol. Cells, 1996. 41-42: p. 205-217.
31. B.M. Keyes, P. Dippo, W. Metzger, J. AbuShama, and R. Noufi. Cu(In,Ga)Se2 thin-film evolution during growth - A photolumincence study. in 29th IEEE Photovoltaic Specialist Conference. 2002. New Orleans, LA.
32. T. Nakada, H. Ohbo, T. Watanabe, H. Nakazawa, M. Matsui, and A. Kunioka, Improved Cu(In,Ga)(S,Se)2 thin film solar cells by surface sulfurization. Solar Energy Materials and Solar Cells, 1997. 49(1-4): p. 285-290.
33. J. Sterner, T.W. Matthes, J. Kessler, J. Lu, J. Keraenen, E. Olsson, and L. Stolt. Sulfurization of thin film solar cell absorbers. in proceedings of
the 16th European Photovoltaic Solar Energy Conference. 2000.
34. S.-H. Wei and A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. J. Appl. Phys., 1995. 78(6): p. 3846-3856.
35. T. Walter, R. Menner, and H. W.Schock. Characterization and Junction Performance of Highly Efficient ZnO/CdS/CuInS2 Thin Film Solar Cells. in Proc. 12th European Photovoltaic Solar Energy Conference. 1994. Amsterdam.
36. M.B. Engelmann M, Birkmire RW, Formation and analysis of graded CuIn(Se1-ySy)(2) films. THIN SOLID FILMS, 2001. 387(1-2): p. 14-17.
37. J. Titus, H.W. Shock, R.W. Birkmire, W.N. Shafarman, and U.P. Singh. Post-deposition sulfur incorporation into CuInSe2 thin films. in Mat. Res. Soc. Symp. Proc. 2001.
38. H.A. Basol BM, Leidholm C, Norsworthy G, Kapur VK, Swartzlander A, Matson R, Studies on sulfur diffusion into Cu(In,Ga)Se-2 thin films. PROGRESS IN PHOTOVOLTAICS, 2000. 8(2): p. 227-235.

Chapter2
References

1. 林松斌, Epitaxial growth of CuInSe2 thin films: microstructural control and annealing behaviors, in 材料科學研究所. 1995, 中山大學.
2. 古俊能, A study on growth and properties of epitaxial CuGaSe2 thin films, in 材料科學研究所. 1999, 中山大學.
3. http://www.mines.edu/fs_home/cwolden/chen435/clean.htm, SOP of RCA clean.
4. Practical Technique for Microanalysis. 1998: JOEL.

Chapter3
References

1. H.J. Lewerenz, Development of copperindiumdisulfide into a solar material. Sol. Energy Mater. Sol. Cells, 2004. 83: p. 395-407.
2. H. Metzner, T. Hahn, J.-H. Bremer, M. Seibt, B. Plikat, I. Dirnstorfer, and B.K. Meyer, Structural and electronic properties of epitaxially grown CuInS2 films. THIN SOLID FILMS, 2000. 361-362: p. 504-508.

Chapter4
References

1. M. Engelmann, B.E. McCandless, and R.W. Birkmire, Formation and analysis of graded CuIn(Se1-ySy)2 films. THIN SOLID FILMS, 2001. 387(1-2): p. 14-17.
2. B.M. Basol, A. Halani, C. Leidholm, G. Norsworthy, V.K. Kapur, A. Swartzlander, and R. Matson, Studies on sulfur diffusion into Cu(In,Ga)Se-2 thin films. PROGRESS IN PHOTOVOLTAICS, 2000. 8(2): p. 227-235.
3. J. Palm, V. Probst, W. Stetter, R.T. oelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M.W. endl, and F.H. Karg, CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability. THIN SOLID FILMS, 2004. 451-452: p. 544-551.
4. J. Titus, H.W. Shock, R.W. Birkmire, W.N. Shafarman, and U.P. Singh. Post-deposition sulfur incorporation into CuInSe2 thin films. in Mat. Res. Soc. Symp. Proc. 2001.
5. A. Brummer, V. Honkimaki, P. Berwian, V. Probst, J. Palm, and R. Hock, Formation of CuInSe2 by the annealing of stacked elemental layers-analysis by in situ high-energy powder diffraction. Thin Solid Films, 2003. 437(1-2): p. 297-307.
6. Y. Tanaka, N. Akema, T. Morishita, D. Okumura, and K. Kushiya. Improvement of Voc upward of 600 mV/cell with CIGS-based absorber prepared by Selenization/Sulfurization. in 17th EC Photovoltaic Solar Energy Conference. 2001. Munich.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code