Responsive image
博碩士論文 etd-0825107-225011 詳細資訊
Title page for etd-0825107-225011
論文名稱
Title
區塊式貝氏決定迴授等化器在補零正交分頻多工系統中結合半盲蔽式通道估測技術之應用
Block-based Bayesian Decision Feedback Equalization for ZP-OFDM Systems with Semi-Blind Channel Estimation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-29
繳交日期
Date of Submission
2007-08-25
關鍵字
Keywords
補零正交分頻多工系統、半盲蔽式通道估測、區塊傳輸系統、偽隨機後置編碼、最大縮短信號雜訊比、貝氏決定迴授等化器、時域等化器
ZP-OFDM, Block Transmission system, Pseudorandom Postfix, Maximum Shortening Signal-to-Noise Ratio, Bayesian Decision Feedback Equalizer, Semi-Blind Channel Estimation, Time Domain Equalizer
統計
Statistics
本論文已被瀏覽 5831 次,被下載 0
The thesis/dissertation has been browsed 5831 times, has been downloaded 0 times.
中文摘要
具有冗餘資料量(redundancy)之正交分頻多工(OFDM)系統已被使用於許多高速傳輸的無線通訊系統之中。由於信號在通過具有高度分散性之通道會造成很嚴重的區塊間干擾(IBI),為了處理這個問題,在傳輸端引入冗餘資料量將提供我們解決的方法。然而,這個冗餘資料量長度的選擇將會影響系統的效能及頻寬效益,且它也與通道脈衝響應的長度有著高度的相關性。在本篇論文中,我們將以偽隨機後置編碼(PRP)正交分頻多工系統之架構為基礎而提出一個新的區塊式正交分頻多工收發機架構。由於在偽隨機後置編碼正交分頻多工系統中,利用接收信號的一階統計特性我們將可利用偽隨機後置編碼來做半盲蔽式之通道估測。因此,在冗餘資料量足夠的條件下,偽隨機編碼正交分頻多工系統結合貝氏決定迴授等化器(Bayesian decision-feedback equalizer)將可用來同時消除區塊間干擾及符碼間干擾(ISI)。然而,在冗餘資料量不足的條件之下,即,冗餘資料量的長度比通道階數少時,我們將對通道估測的方法先做一個修正。為了更進一步的降低接收機的複雜度,我們將使用最大縮短信號雜訊比之時域等化器(MSSNR-TEQ)結合貝氏迴授等化器分別來消除區塊間干擾及符碼間干擾。換言之,在得到了通道的資訊之後,便可以使用最大信號雜訊比之時域等化器來消除區塊間干擾,以及使用貝氏決定迴授等化器來消除符碼間干擾以改善系統之效能。在電腦模擬的部分,我們將使用位元錯誤率來做系統效能的分析,並且與使用傳統的最小均方誤差之迴授等化器之系統做比較 (MMSE-DFE)。
Abstract
Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions. The introduced redundancy at the transmitter allows us to overcome serious inter-block interference (IBI) problems due to highly dispersive channel. However, the selection of redundancy length will affect the system performance and spectral efficiency, and is highly dependent on the length of channel impulse response. In this thesis, based on the pseudorandom postfix (PRP) OFDM scheme we propose a novel block-based OFDM transceiver framework. Since in the PRP-OFDM system the PRP can be employed for semi-blind channel estimation with order-one statistics of the received signal. Hence, for sufficient redundancy case the PRP-OFDM system with the Bayesian decision feedback equalizer (DFE) is adopted for suppressing the IBI and ISI simultaneously. However, for the insufficient redundancy case (the length of redundancy is less than the order of channel), we first propose a modified scheme for channel estimation. To further reduce the complexity of receiver, the maximum shortening signal-to-noise-ratio time domain equalizer (MSSNR TEQ) with the Bayesian DFE is developed for suppressing the IBI and ISI, separately. That is, after knowing the channel state information (CSI) and removing the effect of IBI with MSSNR TEQ, the Bayesian DFE is applied for eliminating the ISI. Via computer simulation, we verify that performance improvement, in terms of bit error rate (BER), compared with the conventional block-based minimum mean square error (MMSE)-DFE can be achieved.
目次 Table of Contents
Abstract...i
Contents...ii
List of Figures and Tables...iv
Chapter 1 Introduction...1
Chapter 2 Block-based OFDM Transmission Systems...5
2.1 Introduction...5
2.2 Block Transmission Model...6
2.3 Decision Feedback Equalizer...12
2.3.1 MMSE-DFE...13
2.3.2 MMSE-IBI-DFE...16
Chapter 3 Bayesian Decision Feedback Equalization with Semi-Blind Channel Estimation...20
3.1 Introduction...20
3.2 Pseudo Random Postfix OFDM...21
3.2.1 Notations and PRP-OFDM modulator...21
3.2.2 Semi-blind channel estimation of the PRP-OFDM system...24
3.3 The MSSNR TEQ...28
3.3.1 Description of MSSNE TEQ...24
3.3.2 PRP-OFDM combining with the MSSNR TEQ for semi-blind channel estimation under the condition of insufficient redundancy...29
3.4 Bayesian Decision Feedback Equalizer...30
Chapter 4 Computer Simulation...36
4.1 Introduction...36
4.2 Channel Estimation for PRP-OFDM System...36
4.2.1 Sufficient Case (P - M >= L + 1)...37
4.2.2 Insufficient Case (P - M < L)...37
4.3 Channel Estimation with Shortening Approach...40
4.4 Bit Error Rate Performance of Receivers with Different Equalizer...41
4.4.1 Sufficient Case (P - M >= L)...41
4.4.2 Insufficient Case (P - M < L)...44
Chapter 5 Conclusions...48
References...49
Appendix A...51
Appendix B...53
參考文獻 References
[1] G. D. Forney, Jr. and M. V. Eyuboˇglu, “Combined equalization and coding using precoding,” IEEE Commun. Mag., pp. 25–34, Dec. 1991.
[2] G. K. Kaleh, “Channel equalization for block transmission systems,” IEEE J. Select. Areas Commun., vol. 13, pp. 110–121, Jan. 1995.
[3] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Redundant filterbank precoders and equalizers—Part I: Unification and optimal designs,” IEEE Trans. Signal Processing, vol. 47, pp. 1988–2006, July 1999.
[4] K. Abend and B. D. Fritchman, “Statistical detection for communication channels with intersymbol interference,” Proc. IEEE, vol. 58, pp. 779–785, May 1970.
[5] A. Stamoulis, G. B. Giannakis, A. Scaglione, “Block FIR Decision-Feedback Equalizers for Filterbank Precoded Transmissions with Blind Channel Estimation Capabilities,” IEEE Trans. Comm., Vol. 49, no. 1, pp.69-83, Jan. 2001.
[6] P. J. melsa, R. C. Younce, and C.E. Rohrs, “Impulse response shortening for discrete multitone transceiver,” IEEE Trans. Comm. Vol. 44, No. 12, pp. 1662-1672, Dec. 1996
[7] M. Muck, M. de Courville, and P. Duhamel, “A Pseudorandom Postfix OFDM Modulator-Semi-Blind Channel Estimation and Equalization,” IEEE Trans. Signal Process., vol. 54, no. 3, pp.1005-1017, Mar. 2006
[8] M. Muck, M. De Courville, and P. Duhamel, “Postfix design for pseudo random postfix OFDM modulators,” presented at the 9th Int. OFDM Workshop, Dresden, Germany, Sep. 2004.
[9] D.Williamson, R. A.Kennedy, and G.W. Pulford, “Block decision feedback equalization,” IEEE Trans. Commun., vol. 40, pp. 255–264, Feb. 1992.
[10] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive Bayesian equalizer with decision feedback,” IEEE Trans. Signal Processing, vol. 41, pp. 2918–2927, Sept. 1993.
[11] S. Chen, S. McLaughlin, B. Mulgrew, and P. M. Grant, “Bayesian decision feedback equalizer for overcoming co-channel interference,” Proc. Inst. Elect. Eng.—Commun., vol. 143, no. 4, pp. 219–225, 1996.
[12] S. Chen, S. McLaughlin, B. Mulgrew, “Complex-valued radial basis function network, Part II: application to digital communication channel equalization,” EURASIP Signal Processing., Vol. 36, pp. 175-188, 1994.
[13] S. Chen, B. Mulgrew, S. McLaughlin, and P. M. Grant, ”Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channel, ” IEEE Trans. Commu, Vol. 43, no. 5, pp. 1937-1946, May 1995.
[14] ISO/IEC,”IEEE Std. 802.11a,” 1999.
[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Decition Theory. NJ:
Prentice Hall, 1998.
[16] B. Muqut, Z.Wang, G. B. Giannakis, M. de Courville, and P. Duhamel. “Cyclic Prefixing or Zero padding for Wireless Multicarrier Transmissions?, ” IEEE Trans. Comm., Vol. 50, no. 12, pp. 2316-2148, Dec. 2002.
[17] R.T. Behrens and L.L. Scharf, “Signal processing applications of oblique projection operators,” IEEE Trans. Signal Processing, vol.42, no. 6, pp. 1413-1424, June 1994.
[18] C. H. Wu, S. J. Chern, “A Novel Zero-Order FIR Zero-Forcing Filterbanks Equalizer Using Oblique Projector Approach for OFDM Systems,” IEICE TRANS. COMMUN., VOL E88-B NO. 12, Dec. 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.193.158
論文開放下載的時間是 校外不公開

Your IP address is 3.141.193.158
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code