Responsive image
博碩士論文 etd-0825108-115834 詳細資訊
Title page for etd-0825108-115834
論文名稱
Title
TSG101與 Sp1在子宮頸上皮內贅瘤中表現相關性之探討
Correlated expression of TSG101 and Sp1 in cervical intraepithelial neoplasia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
44
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-26
繳交日期
Date of Submission
2008-08-25
關鍵字
Keywords
子宮頸上皮內贅瘤
dysplasia, TSG101, Sp1, CIN
統計
Statistics
本論文已被瀏覽 5686 次,被下載 1757
The thesis/dissertation has been browsed 5686 times, has been downloaded 1757 times.
中文摘要
人類腫瘤易感基因 TSG101,它的功能包括細胞內蛋白質分送、液泡的傳輸、基因轉錄及上皮細胞生長及分化之調控。在 TSG101基因啟動子序列中具有 Sp1的結合位點,但不具有 TATA box,為一典型管家基因,文獻指出,TSG101調控皮膚角化上皮細胞的分化是受到 PKC-Sp1的訊息之引導。本研究在探討不同時期之子宮頸上皮內贅瘤檢體中, TSG101與 Sp1表現的相關性。檢體源自財團法人癌症健康篩檢中心病理科所收集從2005年1月到2007年7月的子宮頸上皮組織檢體的臘塊共129例,包括41例正常及88例子宮頸上皮內贅瘤之檢體(35例 CIN I,28例 CIN II,25例 CIN III/CIS)。檢體以免疫組織化學染色後,結果以 image pro-plus 6.1 軟體進行顯微影像量化分析,再藉由 SPSS 統計分法來分析比較在不同程度病灶的細胞中 TSG101及 Sp1兩種蛋白質表現之相關性。結果發現 TSG101 與 Sp1 在正常的子宮頸上皮細胞主要表現在副基底層及中間層的細胞內,而在基底層及快要老化的表皮層的細胞內,則 TSG101與 Sp1不會表現或呈現弱陽性,但隨著子宮頸上皮細胞異常生長的情況愈嚴重(CIN II、CIN III/CIS),其 TSG101與 Sp1表現都有顯著增加。此結果與先前報導認為 TSG101在誘導上皮細胞的生長及分化的過程中,是透過 Sp1之訊息傳遞所調控之結果相符合。本研究結果顯示在正常子宮頸上皮細胞中 TSG101與 Sp1蛋白質有一致之表現關係,亦間接確認 Sp1訊息調控 TSG101之表現在上皮細胞生長分化之重要性;此外,在不同時期之子宮頸上皮內贅瘤檢體中 ,TSG101 及 Sp1蛋白之表現可能為重要標幟,而值得進行更多的臨床檢體之分析,以確認其作為預後指標之可能性。
Abstract
Human tumor susceptibility gene 101, TSG101, exhibits a variety of functions including protein sorting, vesicular trafficking, and regulation of transcription, epithelial growth and differentiation. The upstream sequence of TSG101 gene shows a typical housekeeping TATA-less and Sp1 containing promoter. Our previous data indicated the essential role of TSG101 in skin keratinocyte differentiation that is under the regulation of PKC-Sp1 signaling. In this report, we investigated the correlation of TSG101 and Sp1 expression in the specimens of cervical intraepithelial neoplasia. Cervical intraepithelial neoplasia specimens used in this study were 129 paraffin blocks from 41 normal, 35 CIN I, 28 CIN II and 25 CIN III/CIS patients collected in Cancer Prevention and Screening Center at Kaohsiung from January 2005 to July 2007. The expression of TSG101 and Sp1 were analyzed by immunohistochemistry and digitally quantified by Image Pro-plus 6.1 Microimage software according to the method described by Eliane Pedra Dias et al. The quantified data were statistically analyzed using Spearman's rho coefficient and SPSS for Win, v.14 statistical software (SPSS Inc., Chicago, USA). Values were considered significantly different when the P value < 0.05. We found that TSG101 and Sp1 are expressed in cells of parabasal and intermediate layers in normal cervical epithelium, whereas their expressions in basal and superficial layers were either absence or reduced. Interestingly, the expressions of these two markers are significantly increased in more advanced progression stages (CIN II and CIN III/CIS) of cervical intraepithelial neoplastic specimens (P < 0.05). Congruous expression pattern of TSG 101 and Sp1 in normal cervical epithelium confirms the important of cellular Sp1 signaling in regulating TSG101 expression, which is essential during epithelial cell growth and differentiation. Our results also indicate upregulation of these two markers might be important for the progression of cervical intraepithelial neoplasia. Further analysis using more specimens should reveal the prognostic value of these two markers.
目次 Table of Contents
中文摘要--------------------------------------------------------p. 1
英文摘要--------------------------------------------------------p. 3
背景介紹--------------------------------------------------------p. 5
子宮頸上皮內贅瘤----------------------------------------p. 5
人類腫瘤易感基因(TSG101 ) --------------------------p. 8
Specificity protein 1(Sp1)----------------------------p. 12
實驗目的--------------------------------------------------------p. 16
實驗材料與方法-----------------------------------------------p. 16
H&E 染色------------------------------------------------p. 18
免疫組織化學染色--------------------------------------p. 19
影像分析--------------------------------------------------p. 20
統計分析--------------------------------------------------p. 21
實驗結果與討論-----------------------------------------------p. 21
參考文獻--------------------------------------------------------p. 29
附圖--------------------------------------------------------------p. 34
參考文獻 References
Apt D, Watts RM, Suske G, Bernard HU (1996). High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology 224: 281-91.

Armstrong SA, Barry DA, Leggett RW, Mueller CR (1997). Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J Biol Chem 272: 13489-95.

Babst M, Odorizzi G, Estepa EJ, Emr SD (2000). Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1: 248-58.

Bennett NA, Pattillo RA, Lin RS, Hsieh CY, Murphy T, Lyn D (2001). TSG101 expression in gynecological tumors: relationship to cyclin D1, cyclin E, p53 and p16 proteins. Cell Mol Biol (Noisy-le-grand) 47: 1187-93.

Burgdorf S, Leister P, Scheidtmann KH (2004). TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem 279: 17524-34.

Carney ME, Maxwell GL, Lancaster JM, Gumbs C, Marks J, Berchuck A et al (1998). Aberrant splicing of the TSG101 tumor suppressor gene in human breast and ovarian cancers. J Soc Gynecol Investig 5: 281-5.

Combita AL, Bravo MM, Touze A, Orozco O, Coursaget P (2002). Serologic response to human oncogenic papillomavirus types 16, 18, 31, 33, 39, 58 and 59 virus-like particles in colombian women with invasive cervical cancer. Int J Cancer 97: 796-803.

Courey AJ, Holtzman DA, Jackson SP, Tjian R (1989). Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell 59: 827-36.

Courey AJ, Tjian R (1988). Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55: 887-98.
Crum CP, Mitao M, Levine RU, Silverstein S (1985). Cervical papillomaviruses segregate within morphologically distinct precancerous lesions. J Virol 54: 675-81.

Doorbar J (2006). Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110: 525-41.

Dynan WS, Tjian R (1983). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35: 79-87.

Dynan WS, Tjian R (1985). Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316: 774-8.

Emili A, Greenblatt J, Ingles CJ (1994). Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol 14: 1582-93.

Feng GH, Lih CJ, Cohen SN (2000). TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence. Cancer Res 60: 1736-41.

Francisco JS, Moraes HP, Dias EP (2004). Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz Oral Res 18: 100-4.

Gayther SA, Barski P, Batley SJ, Li L, de Foy KA, Cohen SN et al (1997). Aberrant splicing of the TSG101 and FHIT genes occurs frequently in multiple malignancies and in normal tissues and mimics alterations previously described in tumours. Oncogene 15: 2119-26.

Genest DR, Stein L, Cibas E, Sheets E, Zitz JC, Crum CP (1993). A binary (Bethesda) system for classifying cervical cancer precursors: criteria, reproducibility, and viral correlates. Hum Pathol 24: 730-6.

Hadaschik D, Hinterkeuser K, Oldak M, Pfister HJ, Smola-Hess S (2003). The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation. J Virol 77: 5253-65.

Howley PM (1991). Role of the human papillomaviruses in human cancer. Cancer Res 51: 5019s-5022s.

Kadonaga JT, Carner KR, Masiarz FR, Tjian R (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51: 1079-90.

Karlseder J, Rotheneder H, Wintersberger E (1996). Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol 16: 1659-67.

Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK (2002). Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem 269: 2961-70.

Klaes R, Kloor M, Willeke F, Melsheimer P, von Knebel Doeberitz M, Ridder R (1999). Significant increase of a specific variant TSG101 transcript during the progression of cervical neoplasia. Eur J Cancer 35: 733-7.

Koonin EV, Abagyan RA (1997). TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nat Genet 16: 330-1.

Lee MP, Feinberg AP (1997). Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Res 57: 3131-4.

Li L, Cohen SN (1996). Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85: 319-29.

Li L, Li X, Francke U, Cohen SN (1997). The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell 88: 143-54.

Li L, Liao J, Ruland J, Mak TW, Cohen SN (2001). A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proc Natl Acad Sci U S A 98: 1619-24.

Liu RT, Huang CC, You HL, Chou FF, Hu CC, Chao FP et al (2002). Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 21: 4830-7.

Lu J, Lee W, Jiang C, Keller EB (1994). Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem 269: 5391-402.

Maucuer A, Camonis JH, Sobel A (1995). Stathmin interaction with a putative kinase and coiled-coil-forming protein domains. Proc Natl Acad Sci U S A 92: 3100-4.

Moyret-Lalle C, Duriez C, Van Kerckhove J, Gilbert C, Wang Q, Puisieux A (2001). p53 induction prevents accumulation of aberrant transcripts in cancer cells. Cancer Res 61: 486-8.

Oh Y, Proctor ML, Fan YH, Su LK, Hong WK, Fong KM et al (1998). TSG101 is not mutated in lung cancer but a shortened transcript is frequently expressed in small cell lung cancer. Oncogene 17: 1141-8.

Pal S, Claffey KP, Cohen HT, Mukhopadhyay D (1998). Activation of Sp1-mediated vascular permeability factor/vascular endothelial growth factor transcription requires specific interaction with protein kinase C zeta. J Biol Chem 273: 26277-80.

Philipsen S, Suske G (1999). A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27: 2991-3000.

Ryu S, Zhou S, Ladurner AG, Tjian R (1999). The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397: 446-50.

Saffer JD, Jackson SP, Annarella MB (1991). Developmental expression of Sp1 in the mouse. Mol Cell Biol 11: 2189-99.

Steiner P, Barnes DM, Harris WH, Weinberg RA (1997). Absence of rearrangements in the tumour susceptibility gene TSG101 in human breast cancer. Nat Genet 16: 332-3.

Sun Z, Pan J, Bubley G, Balk SP (1997). Frequent abnormalities of TSG101 transcripts in human prostate cancer. Oncogene 15: 3121-5.

Sun Z, Pan J, Hope WX, Cohen SN, Balk SP (1999). Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer 86: 689-96.

Wagner KU, Dierisseau P, Rucker EB, 3rd, Robinson GW, Hennighausen L (1998). Genomic architecture and transcriptional activation of the mouse and human tumor susceptibility gene TSG101: common types of shorter transcripts are true alternative splice variants. Oncogene 17: 2761-70.

Willeke F, Ridder R, Bork P, Klaes R, Mechtersheimer G, Schwarzbach M et al (1998). Identical variant TSG101 transcripts in soft tissue sarcomas and various non-neoplastic tissues. Mol Carcinog 23: 195-200.

Xie W, Li L, Cohen SN (1998). Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc Natl Acad Sci U S A 95: 1595-600.

You HL, Eng HL, Hsu SF, Chen CM, Ye TC, Liao WT et al (2007). A PKC-Sp1 signaling pathway induces early differentiation of human keratinocytes through upregulation of TSG101. Cell Signal 19: 1201-11.

Zhong Q, Chen Y, Jones D, Lee WH (1998). Perturbation of TSG101 protein affects cell cycle progression. Cancer Res 58: 2699-702.

Crum CP, Cibas ES, Lee KR. (1997) Criteria for grading squamous intraepithelial lesions. In: Pathology of Early Cervical Neoplasia, New York: Churchill Livingstone, 47-91.

胡志吉. (1999). TSG101基因及其蛋白質產物之分子生物學研究. 國立中山大學碩士論文.

黃曼怡. (2004). ETF 及 STS-1 轉錄因子結合位點突變對TSG101啟動子活性影響之探討. 國立中山大學碩士論文.

陳靜玫. (2004).TSG101在鱗狀上皮細胞癌表現之分析. 國立中山大學在職碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code