Responsive image
博碩士論文 etd-0825108-231157 詳細資訊
Title page for etd-0825108-231157
論文名稱
Title
澎湖地區之亞洲沙塵物化特性分析及沙塵來源解析
Physicochemical Characteristics and Source Allocation of Asian Dusts Sampled in Penghu Islands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
271
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-10
繳交日期
Date of Submission
2008-08-25
關鍵字
Keywords
逆軌跡分析、灰關聯度、富集因子、懸浮微粒、沙源區、亞洲沙塵暴
Backward Trajectory, Asian Dust Storms, Source Regions, Suspended Particles, Enrichment Factor, Grey Relational Analysis
統計
Statistics
本論文已被瀏覽 5691 次,被下載 2765
The thesis/dissertation has been browsed 5691 times, has been downloaded 2765 times.
中文摘要
大陸近年來亞洲沙塵暴發生頻仍,據估計亞洲沙塵暴每年向大氣輸送的沙塵量約高達8億公噸,沙塵暴侵襲期間除會產生大量沙塵沉降,並導致空氣品質劣化及能見度降低外,更會對民眾健康造成影響。
為瞭解沙塵暴期間之物化特徵及其與沙源地之關聯性,本研究特於2002~2006年間在澎湖地區進行亞洲沙塵微粒之採集,另於內蒙古自治區採集沙源區表土進行再懸浮採樣,用以分析沙源地及澎湖懸浮微粒之化學成份,並以富集因子分析、灰關連分析判斷沙源地,再以逆軌跡將沙塵暴傳輸至台灣之軌跡做分類,並將軌跡線與化學成份推得之結果做驗證。
本研究發現沙塵暴來臨期間澎湖地區大氣懸浮微粒濃度(PM10)明顯增加,約為非沙塵暴期間PM10濃度之3~6倍,其中又以PM2.5-10之濃度增加最為明顯,可由10~30 μg/m3劇升至80~130 μg/m3,且粒徑分部亦由雙峰分佈變為以粗微粒為主之單峰分佈。
本研究進一步將懸浮微粒樣本進行化學成份分析,分析項目包括:水溶性離子成份、碳成份、金屬元素成份。本研究發現亞洲沙塵暴侵襲期間細微粒水溶性離子成份大致呈現SO42- > NH4+ > NO3- > Cl- > Ca2+ > Na+ > K+ > Mg2+ > F-之趨勢,碳成份亦主要分佈於細微粒之中。就粗微粒而言,懸浮微粒多呈現Cl- > SO42- > NO3- > Na+ > Ca2+ > NH4+ > Mg2+ > K+ > F-之趨勢,而粗細微粒之金屬元素成份皆以Al、Fe、Na、Mg、K、Ca、Sr等地殼元素為主。
除沙塵懸浮微粒之物化特徵分析外,本研究亦以HYSPLIT MODEL方式繪製其逆軌跡圖(backward trajectory),將亞洲沙塵傳輸軌跡區分為東方折返型、東南迴轉型及東南直傳型等三類,分析沙塵暴發生之時空背景等變因,對於其傳輸路徑及物化特徵之影響。本研究發現相同軌跡類型之沙塵暴,其物化成份之指紋略有相似之處,經由逆軌跡圖可回推沙塵暴發生之沙塵源地。
本研究特於內蒙古自治區之沙源地採集土壤樣本於實驗室再懸浮後,採集粗、細微粒(PM2.5、PM2.5-10)並分析其化學成份,探討沙源地再懸浮沙塵之物化特徵,研究結果發現不同區域之再懸浮沙塵之物化特徵雖相似但仍具有可辨識性,並可供判斷再懸浮沙塵之沙源地區位。本研究將澎湖地區沙塵暴期間懸浮微粒與沙源地再懸浮沙塵之化學成份資料加以比較,並透過富集因子(enrichment factor, EF)及灰關聯(grey relational analysis)解析方法探討兩者間之相關性。
本研究將逆軌跡回推、富集因子解析、灰關聯解析沙塵暴沙源地之結果相比較,發現三者之相關性甚高,兩種參考元素計算所推得之沙源地相似度高達88%,而逆軌跡與灰關聯相似度亦高達83%,逆軌跡與富集因子相似度則達75%,灰關聯與富集因子相似度亦達69%。整體而言,三項方法分析之沙源地有兩種方法以上得到相同沙源地者高達94%,三項方法解析之沙源地皆相同者比例亦達56%,由此可見三種分析方法皆具可參考性,可做為推斷沙塵暴沙源地之方法。
Abstract
In recent years, the Asian dust storms occurred frequently. It was estimated that approximately eight hundred million metric tons of Asian dusts transported to the atmosphere yearly. During the dust storm period, Asian dusts not only induce poor air quality, but also reduce atmospheric visibility and influence human health.
In order to investigate the physicochemical characteristics and source allocation of Asian dusts, this study collect the Asian dusts in the Pescadores Islands during the years of 2002~2006. In addition, this study collected top soils in three regions of Inner Mongolia and resuspended the soil samples in a resuspension chamber to analyze their chemical composition. Moreover, this study applied enrichment factor analysis (EF) and grey relational analysis to allocate the potential sources of Asian dusts and compare them with the transportation routes obtained from backward trajectory.
During Asian dust storm periods, the concentration of atmospheric particulate matter (PM10) in the Pescadores Islands increased significantly, probably is 3~6 times of PM10 during non-dust storm periods. Among them, coarse particles (PM2.5-10) particularly rose from 10~30 μg/m3 to 80~130 μg/m3 and the size distribution changed from bi-modal distribution to single modal distribution of coarse particles during Asian dust storm periods.
This study further analyzed the chemical composition of Asian dusts, including water-soluble ionic species, carbon contents, and metallic contents. For fine particles (PM2.5), the order of water-soluble ionic species was SO42- > NH4+ > NO3- > Cl- > Ca2+ > Na+ > K+ > Mg2+ > F-. For coarse particles (PM2.5-10), the order of water-soluble ionic species was Cl- > SO42- > NO3- > Na+ > Ca2+ > NH4+ > Mg2+ > K+ > F-. The carbon contents distributes mainly in fine particles. The major contents of both fine and coarse particles were crustal elements (i.e. Al, Fe, Na, Mg, K, Ca, and Sr).
In addition to the analysis of physicochemical characteristics of Asian dusts, this study applied HYSPLIT MODEL to figure out their transportation routes by backward trajectory. According to the backward trajectories, this study compartmentalized Asian dusts storm transportation routes into three categories: Eastward Transportation and Retraced (ETR), Southeasterly Transportation and Circumrotated (STC), and Straight Southeasterly Transportation (SST). Analyzing the spatial and temporary background variables to investigate the influence of transportation routes on Asian dusts’ physicochemical characteristic. This study revealed that the physicochemical characteristics were very similar for same category of Asian dust storms, which can be used to allocate the source regions of Asian dust storms.
This study resuspended the soil samples collected in Inner Mongolia inside a resuspension chamber and collected the suspended particles (PM2.5, PM2.5-10) for chemical analysis. Chemical analysis results indicated that the fingerprints of chemical composition for different regions were similar but still distinguishable, which can be used to identify the source areas of Asian dusts. This study further compare and correlate the Asian dusts collected at the Pescadores Islands during Asian dust storm periods with the soils collected in Inner Mongolia chemically by enrichment factor and grey relational analysis.
This study further compared the source allocation of Asian dust storms obtained from enrichment factor, grey relational analysis, and backward trajectory and found the results of these three methods were quite similar. For enrichment factor analysis, 88% of similarity was obtained by using two separate reference elements (Al and Fe). The similarity of backward trajectory and grey relational analysis reached as high as 83%. Moreover, the backward trajectory and enrichment factor were similar up to 75%, while the grey relational analysis and enrichment factor were similar up to 69%.
Overall, two out of three aforementioned methods can effectively allocate the source regions of Asian dusts by 94%, while all three methods can successfully allocate the source regions of Asian dusts by 56%. Comparison of three aforementioned methods showed that they can be applied to allocate the source regions of Asian dusts.
目次 Table of Contents
目 錄
中文摘要……………………………………………………………. I
英文摘要…………………………………………………………….. III
目錄………………………………………………………….………. V
表目錄……………………………………………………….………. X
圖目錄……………………………………………………………….. XII
第一章 前言……………………………………………………..… 1-1
1.1 研究背景……………………………………………….…. 1-1
1.2 研究目的……………………………………………….…. 1-2
1.3 研究範圍及架構………………………………………….. 1.3
第二章 文獻回顧……………………………………………..…… 2-1
2.1懸浮微粒之來源及物化特性……..…………………….…. 2-1
2.1.1 懸浮微粒之來源……….…………………………. 2-1
2.1.2 懸浮微粒之生成機制 ………………………….…. 2-2
2.1.3 懸浮微粒之粒徑分佈…………………………….... 2-3
2.1.4懸浮微粒之化學成份………………………………. 2-4
2.1.4.1 水溶性離子成份…………………………... 2-6
2.1.4.2 碳成份……………………………………... 2-7
2.1.4.3 金屬元素成份……………………………... 2-9
2.2 亞洲沙塵暴之特性………………………………….….… 2-10
2.2.1 沙塵暴之定義………….…………………………... 2-10
2.2.2 沙塵暴之成因…………………………….………... 2-11
2.2.3 沙塵暴之特性……………………………………… 2-13
2.2.4 沙塵暴之影響……………………………………… 2-15
2.3沙塵暴之傳輸..…………………………………..………… 2-17
2.3.1亞洲沙塵暴之傳輸路徑……………………………. 2-17
2.3.2衛星影像圖(Artificial Satellite Photos)解析沙塵暴之傳輸……………………………………………… 2-18
2.3.3逆軌跡圖解析沙塵暴之傳輸……………………….. 2-20
2.4沙塵暴之源解析模式與應用……………………………… 2-21
2.4.1富集因子分析法(Enrichment Factor)………………. 2-21
2.4.2化學質量平衡受體模式(CMB Receptor Model)…... 2-23
2.4.3逆軌跡模式(Backward Trajectory)…………………. 2-25
2.4.4灰色理論模式(Gray System Theory)……………….. 2-26
第三章 研究方法……………………………………………….…. 3-1
3.1 採樣規劃…………………………………………….……. 3-1
3.1.1採樣地點規劃…………………………….……….… 3-1
3.1.2採樣時間規劃……………………………….……… 3-3
3.2 採樣方法…………………………………………….……. 3-3
3.2.1沙源地表土採樣方法…………………………..…… 3-3
3.2.2再懸浮室及噴粉設備……………………….………. 3-5
3.2.3高量採樣器………………………………….………. 3-6
3.2.4雙粒徑分道採樣器………………………….………. 3-7
3.2.5微孔均勻沉降衝擊器……………………….………. 3-10
3.3分析方法……….………………………………….……….. 3-11
3.3.1質量濃度分析………………………………….......... 3-12
3.3.2水溶性離子成份分析….…………………….…….... 3-13
3.3.3碳成份分析……………………………….…………. 3-14
3.3.4金屬元素成份分析……………………….…………. 3-15
3.4品保與品管作業流程……………………………..……. … 3-17
3.4.1採樣方法之品保與品管…………………..………… 3-17
3.4.1.1採樣地點選擇……………………………… 3-17
3.4.1.2採樣濾紙之選擇…………………………… 3-17
3.4.1.3採氣流量校正……………………………… 3-18
3.4.1.4採樣程序…………………………………… 3-19
3.4.1.5採樣濾紙之攜帶與保存…………………… 3-20
3.4.2分析方法之品保與品管…………………..………… 3-20
3.4.2.1質量濃度分析……………………………… 3-20
3.4.2.2化學成份分析……………………………… 3-21
3.5沙源地解析方法……………….…………………….. …… 3-24
3.5.1沙源地化學指紋特徵分析…………………..…….... 3-24
3.5.2富集因子分析…………………….……….……..….. 3-24
3.5.3逆軌跡模式分析……………………………..……… 3-25
3.5.4灰關聯分析………………………………..………… 3-26
第四章 結果與討論……………………………………..………… 4-1
4.1沙源地樣本之分析與探討……….…………...…………… 4-1
4.1.1粗細微粒比值(PM2.5-10/PM2.5)……………………… 4-2
4.1.2水溶性離子成份分析探討………………..…….…... 4-2
4.1.3碳成份分析探討………………………………..…… 4-9
4.1.4金屬元素成份分析探討…………………………….. 4-12
4.2沙塵暴期間懸浮微粒物化特性探討…………………..….. 4-17
4.2.1懸浮微粒質量濃度變化分析………………………. 4-17
4.2.2水溶性離子成份分析探討……………………….…. 4-20
4.2.3碳成份分析探討…………………………………….. 4-30
4.2.4金屬元素成份分析探討…………………………….. 4-34
4.3懸浮微粒之傳輸路徑及機制探討………………………… 4-49
4.3.1氣候背景對沙塵暴傳輸路徑探討……………….… 4-49
4.3.2沙塵暴之源地及傳輸來台路徑之探討……………. 4-51
4.3.2.1東方折返型傳輸路徑……………………… 4-51
4.3.2.2東南迴轉型傳輸路徑……………………… 4-52
4.3.2.3東南直傳型傳輸路徑……………………… 4-53
4.3.3傳輸路徑與化學成份之相關性分析……………….. 4-62
4.4沙塵暴之可能沙源地解析………………………………… 4-64
4.4.1以逆軌跡法解析沙塵暴之沙源地…………….…… 4-64
4.4.2以富集因子解析沙塵暴之沙源地…………………. 4-66
4.4.3以灰關聯分析解析沙塵暴之沙源地……….……… 4-81
4.4.4三種沙塵暴沙源地解析方式之異同性比較….…… 4-83
4.4.5沙塵暴及其沙源地解析結果之討論及比較……….. 4-91
第五章 結論與建議………………………...……….…………….. 5-1
5.1結論………………………………………………..……….. 5-1
5.2建議…………………………………………………..…….. 5-4
參考文獻……………………………………………………..……… R-1
附錄A澎湖地區懸浮微粒之質量濃度分析……………………….. A-1
附錄B澎湖地區PM2.5之水溶性離子成份濃度表………………… B-1
附錄C澎湖地區PM10之水溶性離子成份濃度表…………..……... C-1
附錄D澎湖地區PM2.5、PM10之碳成份成份濃度表………….……. D-1
附錄E澎湖地區PM2.5之金屬成份成份濃度表…………………… E-1
附錄F澎湖地區PM10之金屬成份成份濃度表…………………… F-1
附錄G沙源區採樣地理位置及再懸浮微粒質量濃度分析表…….. G-1
附錄H沙源區再懸浮微粒之水溶性離子成份濃度表…………… H-1
附錄I沙源區再懸浮微粒之碳成份成份濃度表…………………. I-1
附錄J沙源區再懸浮微粒之金屬成份成份濃度表………………. J-1
附錄K統計軟體數據資料………………………………………… K-1
參考文獻 References
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of Carbonaceous Material in Southern California Atmospheric Aerosols,” Environmental Science and Technology, Vol. 13, pp. 98-104, 1979.
Barbara, J.T. and Lin, H.J., “Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass,” Aerosol Science and Technology, Vol.30, pp.602-610, 2001.
Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., and Rodriguez, E., “Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters,” Atmos. Environ., 41, 4434-4450, 2007.
Chang, S.Y., Fang, G.C., Chou, C.K., and Chen, W.N., “Source identification of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004,” Chemosphere, 65, 792-801, 2006.
Carmichael, G.R., Zhang, Y., Chen, L.L., Hong, M.S., and Ueda, H., “Seasonal Variation of Aerosol Composition at Cheju, Korea,” Atmos. Environ., Vol.30, No.13, pp.2407-2416, 1996.
Charles, L.B., Jean-Louis, R., and Moustapha A., “Transport of soil and nutrients by wind in bush fallow land and traditionally managed cultivated fields in the Sahel,” Geoderma, Vol.109, pp19-39, 2002.
Cheng, T., Lu, D., Wang, G., and Xu, Y., “Chemical characteristics of Asian dust aerosol from Hunshan Dake Sandland in Northern China,” Atmos. Environ., 39, 2903-2911, 2005.
Fang, S.H. and Chen, H.W., “Air Quality and Pollution Control in Taiwan,” Atmos. Environ., Vol.30, pp.735-741, 1996.
Han, L., Zhuang, G., Cheng, S., and Li, J., “The mineral aerosol and its impact on urban pollution aerosols over Beijing, China,” Atmos. Environ., 41, 7533-7546, 2007.
Kagawa, M., Ishzaka, K., and Ohta, K., “Source of Sulfate in Winter Aerosols over the Sea of Japan, as Inferred from Selenium Composition,” Atmos. Environ., Vol.37, pp.1593-1600, 2003.
Kanayama, S., Yabuki, S., Yanagisawa, F., and Motoyama, R., “The Chemical and Strontium Isotope Composition of Atmospheric Aerosols over Japan : the Contribution of Long-range-transported Asian Dust (Kosa),” Atmos. Environ., Vol.36, pp.5159-5175, 2002.
Kerminen, V.M., Pakkanen, T.A., and Hillamo, R.E., “Interactions between Inorganic Trace Gases and Supermicrometer Particles at a Costal Site,” Atmos. Environ., Vol.31, pp.2753-2765, 1997.
Kocak, M., Mihalopoulos, N., and Kubilay, N., “Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean,” Atmos. Environ., 41, 7351-7368, 2007.
Lin, C.Y., Liu, S.C., Chou, C.C.K., Liu, T.H., Lee, C.T., Yuan, C.S., Shiu, C.T., and Young, C.Y., “Long-range Transport of Asian Dust and Air Pollutants to Taiwan,” TAO, Vol.15, pp.759-784 , 2004.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, Vol. 28, pp. 55-61, 2002.
Ma, C.J., Kasahara, M., Holler, R., and Kamiya, T., “Characteristic of Single Particles Sampled in Japan During the Asia Dust-storm Period,” Atmos. Environ., Vol.35, pp.2707-2714, 2001.
Meng, Z. and Lu, B., “Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin, China,” Atmos. Environ., 41, 7048-7058, 2007.
Mori, I. and Nishikawa, M., “Estimation of the Concentration and Chemical Composition of Kosa Aerosols at Their Origin,” Atmos. Environ., Vol.36, pp.4569-4575, 2002.
Natsagdorj, L., Jugder, D., and Chung, Y.S., “Analysis of Dust Storms Observed in Mongolia during 1937–1999,” Atmos. Environ. Vol.37, pp.1401-1411, 2003.
Pakkanen, T.A., “Study of Formation of Coarse Particle Nitrate Aersol,” Atmos. Environ., Vol.30, No.14, pp.2475-2482, 1996.
Robert, H., Susumu, T., Mikio, K., and Regina, H., “Long-term Characterization of Carbonaceous Aerosol in Uji, Japan,” Atmos. Environ., Vol.36, pp.1267-1275, 2002.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmom, L.G., Shao, M., and Slanina, S., “Source apportionment of PM2.5 in Beijing by positive matrix factorization,” Atmos. Environ., 40, 1526-1537, 2006
Teinil, K., Hillamo, R., and Kerminen, V. M. “Aerosol Chemistry During the NICE Dark and Light Campaigns,” Atmos. Environ., Vol.37, pp.563-575, 2003.
Tuch, Th., Mirme, A., Tamm, E., Heinrich, J., Heyder, J., Brand, P., and Roth, Ch., Wichmann, H.E., Pekkanen, J., and Kreyling, W.G. “Comparison of Two Particle-size Spectrometers for Ambient Aerosol Measurements,” Atmos. Environ., Vol.34, pp.139-149, 2000.
Wang, H. and Shooter, D., “Coarse-fine and Day-night Difference of Water-soluble Ions in Atmospheric Aerosols Collected in Christchurch and Auckland, New Zealand,” Atmos. Environ., Vol.36, pp.3519-3529, 2002.
Wang, S., Yuan W., and Shang, K., “The Impacts of Different Kinds of Dust Events on PM10 Pollution in Northern China,” Atmos. Environ., Vol.40, pp.7975-7982, 2006.
Wang, Y., Zhuang, G., Tang, A., Zhang, W., Sun, Y., Wang, Z., and An, Z., “The evolution of chemical components of aerosols at five monitoring sites of China during dust storms,” Atmos. Environ., 41, 1091-1106, 2007.
Yao, X., Lau, P.S., Fang, M., Chan C.K., and Hu, M., “Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: l-inorganic ions ,” Atmos. Environ., 37, 2991-3000, 2003.
Yuan, C.S., Sau, C.C., Chen, M.C., Huang, M.H., Chang, S.W., Lin, Y.C., and Lee, C.G., “Mass Concentration and Size-resolved Chemical Composition of Atmospheric Aerosols Sampled at the Pescadores Islands during Asian Dust Storm Periods in the Years of 2001 and 2002,” TAO, Vol.15, pp.857-879, 2004.
Yuan C.S., Liu, Y.C., Hai, C.X., and Zhao, M., “Correlation of Atmospheric Aerosols in Taiwan with Sands/Soils Originated at Northern China During ACS Events,” presented at the 5th Asian Aerosol Conference, Kaohsiung, August 26-29, 2007.
Yuan C.S., Liu, Y.C., Hai, C.X., and Zhao, M., “Chemical Approaches for Identifying the Source Areas of Asian Dusts Sampled at the Pescadores Islands, Taiwan,” presented at the International Symposium on Ambient Particulate Matter-Techniques and Policies for Pollution Prevention and Control, Nankai University, Tianjin, China, July 14-19, 2007.
Yuan, C.S., Huang, M.H., Lin, C.F., Liu, Y.C., Hai C.X., and Zhao, M., “Comparison with Chemical Characteristics of Atmospheric Aerosols Sampled at Inner Mongolia and Taiwan,” presented at the 99 th A&WMA Annual Meeting, New Orleans, June 20-23, 2006.
Yuan, C.S., Lin, Z.F., Liu, Y.C., Hai, X.C., and Zhao, M., “Comparing the Fingerprints of Soils and Suspended Sands Originated from Different Regions of Inner Mongolia,” J. Process Eng., Vol.6(S-2), pp.155-159, 2006.
Zhao, W. and Hopke, P.K., “Source apportionment for ambient particles in the San Gorgonio wilderness,” Atmos. Environ., 38, 5901-5910, 2004.
Zhao, X., Zhuang, G., Wang, Z., Sun, Y., Wang, Y., and Yuan, H., “Variation of sources and mixing mechanism of mineral dust with pollution aerosol-revealed by the two peak of a super dust storm in Beijing ,” Atmos. Environ., 84, 265-279, 2007.
史培軍、嚴平、袁藝,“中國土壤風蝕研究的現況與展望”,第十二屆國際水土保持會議,2002。
張順欽、吳權芳,“大陸沙塵暴對台灣地區空氣品質之影響”,大陸沙塵暴對台灣地區空氣品質之影響與預測研討會,2001。
張順欽、李崇德,“大陸沙塵暴對台灣空氣品質影響特徵之研究”,中華民國第十八屆空氣污染控制技術研討會,2001。
林姵吟,“台北都會區黃沙時期氣膠特性”,國立中央大學環境工程研究所碩士論文,2002。
沈振興、張小曳、曹軍驥、王亞強、季峻峰、梅凡民、鹿化煜、李旭祥,“中國沙塵源區粉塵氣溶膠的礦物組成特徵”,2004年春季兩岸四地環境保護研討會,2004。
吳啟文,“臺灣中部都會區氣懸微粒粒徑分布之污染物特性分析”,國立中央大學環境工程研究所碩士論文,1996。
鄭曼婷、邱嘉斌、楊宏隆、陳紀綸,“沿海地區大氣懸浮微粒污染來源分析”,第十五屆空氣污染控制技術研討會,1998。
邵承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
林鉅富,“高雄地區大氣中懸浮微粒PM2.5特性及來源之探討”,國立中山大學環境工程研究所碩士論文,1998。
王景良,“中部空品區污染源逸散粉塵的組成分析”,國立中興大學環境工程研究所碩士論文,1999。
樓基中、袁中新,“高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市環保局研究報告,1997。
徐啟運、胡敬松,“我國西北地區沙塵暴天氣時空分布特徵分析” ,中國沙塵暴研究,1996。
柳中明、吳佳純,“大陸沙漠化現況、趨勢與問題分析”,大陸沙塵暴對台灣地區空氣影響與預測研討會,2001。
袁中新、海春興、趙明、劉乙琦、林志逢,“長距離傳送過程中沙塵指紋特徵辨識探討”,第五屆海峽兩岸沙塵暴與環境治理研討會, 2006。
鄭曼婷,何燕婷,蘇怡如,“2002年至2007年春季於台中地區量測沙塵暴過境期間之氣膠物化特性”,第四屆海峽兩岸氣膠技術研討會暨第五屆海峽兩岸沙塵暴及環境治理學術研討會,2007。
林宗嵩,余嘉裕,“1995年至2004十年間侵台大陸沙塵暴特殊個案分析”,第四屆海峽兩岸氣膠技術研討會暨第五屆海峽兩岸沙塵暴及環境治理學術研討會,2007。
黃耀田,“高雄都會區大氣中懸浮微粒趨勢分析及時空變化模擬”, 國立中山大學環境工程研究所碩士論文,2005。
郭瓊文,“彭佳嶼海域大氣懸浮微粒中金屬元素之組成及來源探討”, 國立台灣大學環境工程研究所碩士論文,2005。
黃士瀚,“台中內陸交通區至沿海地區懸浮粗細微粒重金屬濃度與來源鑑定之研究”,弘光科技大學環境工程研究所碩士論文,2005。
唐振雄,“臺北市空氣監測站間污染物濃度分布及特性分析”,國立臺灣大學環境工程研究所碩士論文,2005。
楊峰杰,“以因子分析法探討高雄市大氣中揮發性有機物之類別及來源”,國立中山大學環境工程研究所碩士論文,2005。
蔡德明、吳義林,“衍生性氣膠對南高屏地區懸浮微粒之貢獻量”,1999年氣膠科技研討會論文集,1999。
邱嘉斌、林煜棋、林忠賢、鄭曼婷、莊秉潔,“ 應用CMB7受體模式與PM軌跡模式解析中部都會區PM10懸浮微粒之污染來源”,第十八屆空氣污染控制技術研討會,2001。
蔣昌琪,“以灰色系統理論來分析水庫污染防治策略之研究”,逢甲大學環境工程與科學所碩士論文,2004。
陳芝企,“灰色理論應用於屏東地區地下水位變化之研究”, 國立成功大學地球科學研究所碩士論文,2002。
黃建達、林宗毅、戴華山、林銳敏,“高雄市大氣懸浮微粒PM2.5及PM2.5-10之化學組成特徵研究”,第十六屆空氣污染控制技術研討會,1999。
鄭曼婷、林煜棋、邱嘉斌、王竹方、郭崇義,“2000年大陸沙塵暴過境中部大氣懸浮微粒之化學成份分析”,第十七屆空氣污染控制技術研討會,2000。
李曉嵐,許凱勝,林銳敏,“大氣二次氣膠(PM1/PM10)特徵分析研究”,第十七屆空氣污染控制技術研討會,2000。
張順欽、李崇德,“1994年至2001年黃沙對台北區PM10增量評估之研究”,中華民國第十九屆空氣污染控制技術研討會,2002。
吳承翰、彭啟明、林能暉,“2000年亞洲沙塵暴侵襲台灣之探討”,2000年第八屆氣膠科技研討會,2000。
梁正中、陳木麟、江憲宗,“運用CMB模式配合分析與調查探討都會區之碳氫化合物來源與特性”,中華民國第十九屆空氣污染控制技術研討會,2002。
張順欽,“2002年大陸沙塵暴侵台密集觀測”,中華民國第十九屆空氣污染控制技術研討會,2003。
楊之遠,“大陸沙塵暴影響台灣地區空氣品質之監測與預報”,物理雙月刊,2001。
楊之遠、李侃翰、柳中明,“長程傳送黃沙與本地污染之空氣品質監測比較-1995年3月12~16日資料分析”,中華民國環境保護學會會誌,第二十卷,第一期,1997。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
吳承翰,“亞洲沙塵暴之模擬”,國立中央大學大氣物理研究所碩士論文,2002。
葉峻榕,“大陸沙塵暴對中部地區酸性空氣污染物之影響”,國立中興大學環境工程研究所碩士論文,2002。
葉士鳴,“大氣懸浮微粒含碳成份之分佈及與來源”,國立成功大學環境工程研究所碩士論文,2002。
黃美倫,“中部空品區大氣氣膠中水溶性離子微粒之特性探討”,國立中興大學環境工程研究所碩士論文,2001。
鍾進忠,“屏東地區大氣PM10成分特性探討”,國立屏東科技大學環境工程與科學研究所碩士論文,2001。
宋鎮宇,“台灣地區大氣氣膠特性之研究-高雄及台北都會區氣膠特性及散光係數”,國立中央大學環境工程研究所碩士論文,2000。
维基百科全書http://zh.wikipedia.org
行政院環境保護署 http://www.epa.gov.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code