Responsive image
博碩士論文 etd-0825109-011347 詳細資訊
Title page for etd-0825109-011347
論文名稱
Title
建構一適用於無接觸式鋼板搬運系統線上氣隙量測之數位影像處理技術
On-line Gap Measurement Techniques for Steel Mill Non-contacting Conveyance System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-21
繳交日期
Date of Submission
2009-08-25
關鍵字
Keywords
搬運系統、數位影像處理、氣隙量測
conveyance system, digital image processing, gap measurement
統計
Statistics
本論文已被瀏覽 5691 次,被下載 2118
The thesis/dissertation has been browsed 5691 times, has been downloaded 2118 times.
中文摘要
本論文提出了一種可應用於鋼鐵廠中無接觸式鋼板搬運系統的線上氣隙量測技術,其中涵蓋建立具備精確、動態快速及高取樣率的氣隙量測功\能,以提供作為鋼板行進與懸浮閉迴路控制依據。本研究中首先依據實際鋼鐵廠應用場合的特性以評估適用的精密尺寸量測架構,同時結合現行鋼鐵廠中既有之鋼板尺寸量測系統,以建立適切的影像處理及校正方法,來發展所需之氣隙量測技術。除此基本架構的建立之外,再配合考量實際可能影響氣隙量測的相關因素,藉由建立量測資料庫及遞迴式修正技術來提升量測精度。同時為達成無接觸式鋼板搬運系統穩定控制之需求,本研究中設計出一整合型光學檢測系統架構,其中結合了線型攝影機的高速掃描及高取樣的特性來作閉迴路驅動控制,以實現檢測控制系統單一化及驅控技術整體化之目標。經過完整的技術開發並透過實際量測的實驗結果,不僅可驗證所提出的架構在靜態量測時可滿足量測精度需求,更可在動態量測時能提供滿足系統控制所需的資訊。因此相信本研究所獲致之成果架構,將可做為未來系統在實際鋼鐵廠發展與應用時的重要參考。
Abstract
On-line gap measurement techniques for steel mill non-contacting conveyance system, which can supply accurate, rapid and high-sampling rate gap measurements, have been proposed. To realize the entire process, by considering the operational environment in a steel mill and combining with those available system dimension measurement instruments, an image-based scheme with proper image processing and parameter calibration process has been developed. The possible sources that affect the air-gap detection accuracies have also been thoroughly investigated, and a comprehensive measurement database and a recursive modification technique have been successfully established. In order to achieve stable control for site implementation, an integrated optical inspection system which combined with the high-speed rate line-scan camera has been designed. From the experimental results, the proposed system can both provide accurate gap values at the static state, and offer stable control operations at the dynamic state. It is believed that the proposed scheme provide innovated guidance for the related conveyance applications in the steel mill.
目次 Table of Contents
中文摘要……………….…………………………………………....…..…. I
英文摘要…………………………………………….…………….….....…. II
目錄……………………………………………………………...…...…….. III
圖目錄……………………………………………………………...….…… VI

表目錄…………………………………………………………....…..….…. X


第一章 緒論…………………………………………….……………..…. 1
1.1 前言………………………………………...………………… 1
1.2 研究動機與目的………………………………………..……. 3
1.3 研究重點與方法………………………………………..……. 8

第二章 精密尺寸量測架構分析……………………………………….. 11
2.1 接觸式量測…………………………………………………. 11
2.2 非接觸式量測………………………………………………. 14
2.2.1 渦電流量測技術...………………………….……… 14
2.2.2 光學量測技術……………………………………… 19

第三章 鋼板搬運系統氣隙量測之共通影像處理技術……………….. 26
3.1 機械視覺與影像處理理論…………………………………. 26
3.1.1 機器視覺…………………………………………… 26
3.1.2 數位影像處理名詞………………………………… 27
3.2 影像處理技術………………………………………………. 30
3.2.1 灰階處理…………………………………………… 30
3.2.2 影像濾波…………………………………………… 31
3.2.3 灰階直方統計……………………………………… 34
3.2.4 影像二值化………………………………………… 35
3.3 影像量測技術………………………………………………. 37
3.3.1 次像素分析技術…………………………………… 37
3.3.2 三角量測法………………………………………… 39
3.3.2 對映函數法………………………………………… 41
3.4 系統校正技術……………………………………………..... 42

第四章 雷射光學檢測系統…………………………………….………. 44
4.1 系統架構說明與其校正方法………………………………. 45

4.2 影像處理及量測流程…...………………………………… 48
4.2.1 影像處理流程……………………………………… 48
4.2.2 氣隙量測原理……………………………………… 50
4.3 實驗用系統之硬體建立……………………………………. 51
4.3.1 CCD攝影機………………………………………... 51
4.3.2 影像擷取卡………………………………………… 52
4.3.3 鏡頭………………………………………………… 54
4.4 量測精度驗證…………………………………………….… 55
4.4.1 相同參考平面……………………………………… 56
4.4.2 不同參考平面……………………………………… 56
4.4.3 不同氣隙尺寸靜態量測結果……………………… 57

第五章 進階型光學檢測系統………………………………………….. 59
5.1 系統校正與座標轉換………………………………………. 59
5.2 影像處理及量測流程………………………………………. 62
5.2.1 影像分析…………………………………………… 62
5.2.2 次像素解析………………………………………… 64
5.2.3 氣隙量測資料庫建立……………………………… 64
5.3 量測精度精進…………………………………………….… 66
5.2.1 影響量測因素……………………………………… 66
5.2.2 遞迴式修正技術…………………………………… 67
5.4 系統硬體建立與量測精度驗證………………………….… 70
5.4.1 不同氣隙尺寸靜態量測驗證……………………… 71
5.4.2 動態量測驗證……………………………………… 73

第六章 整合型光學檢測系統…....……………………………..……… 76
6.1 面型與線型攝影機應用比較…………………………….… 76
6.2 整合架構說明………………………………………………. 78
6.2.1 線型攝影機取像方向與鋼板垂直………………… 78
6.2.2 線型攝影機取像方向與鋼板平行………………… 79
6.3 系統硬體建立………………………………………………. 80
6.3.1 CCD攝影機………………………………………... 80
6.3.2 影像擷取卡………………………………………… 81
6.3.3 鏡頭………………………………………………… 81
6.4 量測精度驗證…………………………………………….… 83
6.4.1 線型攝影機取像方向與鋼板垂直………………… 83
6.4.2 線型攝影機取像方向與鋼板平行………………… 91

第七章 結論與建議....………………………………………………….. 96
7.1 討論與結論…………………………….…………………… 96
7.2 未來研究方向與建議………………………………………. 99

參考文獻…...……………………………………………...……………… 100

作者簡介與著作………………………………………………………….. 109
參考文獻 References
[1] W. Whyte, Cleanroom Design, John Wiley & Sons Inc., Hoboken, U.S.A., 1991.

[2] P. W. Alberti, Personal Hearing Protection in Industry, Raven Press, New York, U.S.A., 1981.

[3] A. E. Fitzgerald, C. Kingsley, J. Stephen, and D. Umans, Electric Machinery, McGraw-Hill, New York, U.S.A., 1992.

[4] K. Fujisaki, J. Nakagawa, and H. Misumi, “Fundamental characteristics of molten metal flow control by linear induction motor,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4764-4766, Nov. 1994.

[5] H. Hayashiya, N. Araki, J. E. Paddison, H. Ohsaki, and E. Masada, “Magnetic levitation of a flexible steel plate with a vibration suppressing magnet,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5052-5054, Sept. 1996.

[6] H. Hayashiya, T. Katayama, H. Ohsaki, and E. Masada, “Utilization of the normal force of a slim for non-contacting steel plate conveyance,” Proceedings of the IEEE 1997 International Magnetics Conference, New Orleans, LA, U.S.A., BR-16, Apr. 1997.

[7] H. Hayashiya, D. Iizuka, H. Ohsaki, and E. Masada, “A novel combined lift and propulsion system for a steel plate conveyance by electromagnets,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2093-2095, July 1998.

[8] H. Hayashiya, H. Ohsaki, and E. Masada, “A combined lift and propulsion system of a steel plate by transverse flux linear induction motors,” IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 4019-4021, Sept. 1999.

[9] 中國鋼鐵公司網頁/產品製造/製造流程, http://www.csc.com.tw/csc/pd/prs.htm, 2009/07/06.

[10] K. Fujisaki, “Application of electromagnetic force to run out table,” IEEE Transactions on Industry Applications, vol. 37, no. 4, pp. 1105-1108, July-Aug. 2001.

[11] J. C. Moulder, C. C. Tai, B. F. Larson, and J. H. Rose, “Inductance of a coil on a thick ferromagnetic metal plate,” IEEE Transactions on Magnetics, vol. 34, no. 2, pp. 505-514, Mar. 1998.

[12] K. Fujisaki, T. Ueyama, and K. Wajima, “Electromagnets applied to thin steel plate,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5058-5060, Sept. 1996.

[13] J. E. Paddison and R. M. Goodall, “Controlling flexible structures in maglev vehicles,” Proceedings of the 2nd IEEE Conference on Control Applications, vol. 2, pp. 675-680, Sept. 1993.

[14] A. Senba, H. Kitahara, H. Ohsaki, and E. Masada, ”Characteristics of an electromagnetic levitation system using a bulk superconductor,” IEEE Transactions on Magnetics, vol. 32, no. 5, pp. 5049-5051, Sept. 1996.

[15] H. Ohsaki, M. Takabatake, and E. Masada, “Stable magnetic levitation of soft ferromagnetic materials by flux pinning of bulk superconductors,” IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 3454-3456, Sept. 1997.

[16] C.-T. Liu and S.-Y. Yao, “Electromagnetic field and force analyses of a non-contacting conveyance system for steel mill application,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 3318-3320, Sept. 2002.

[17] C.-T. Liu, K.-S. Su, and J.-W. Chen, “Operational stability enhancement analysis of a transverse flux linear switched-reluctance motor,” IEEE Transactions Magnetics, vol. 36, no. 5, pp. 3699-3702, Sept. 2000.

[18] J. M. Reeve and C. Pollock, “Image processing method for the visualization and analysis of iron losses in electrical machines,” Proceedings of the IEEE Industry Applications Society 38th Annual Meeting, Salt Lake City, U.S.A., IAS31p4, pp. 1106-1112, Oct. 2003.

[19] J. M. Lopera, M. J. Prieto, F. F. Linera, G. Vecino, and J. A. Gonzalez, “Magnetic contact-less speed measurement sensor for steel industries,” Proceedings of the IEEE Industry Applications Society 38th Annual Meeting, Salt Lake City, U.S.A., IAS03p3, pp. 90-96, Oct. 2003.

[20] G. Sansoni, L. Biancardi, U. Minoni, and F. Docchio, “A novel adaptive system for 3-D optical profilometry using a liquid crystal light projector,” IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 4, pp. 558-566, Aug. 1994.

[21] P. D. Groot, “Unusual techniques for absolute distance measurement,” Optical Engineering, vol. 40, no. 1, pp. 28-32, Jan. 2001.

[22] 林詩瑀,陳志堅,精密量測檢驗(含實習)(修訂二版),全華科技出版社,台灣,2008。

[23] R. A. Jarvis, “A perspective on rang finding techniques for computer vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5, no. 2, pp122-139, Mar. 1983.

[24] A. Carullo, F. Ferraris, S. Graziani, U. Grimaldi, and M. Parvis, “Ultrasonic distance sensor improvement using a two-levelneural-network,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 677-682, Apr. 1996.

[25] R. Schneider, P. Thürmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Optical Engineering, vol. 40, no. 1, pp. 33-37, Jan. 2001.

[26] A. Carullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive applications,” IEEE Sensors Journal, vol. 1, no. 2, pp. 143-147, Aug. 2001.

[27] E. A. Franke, M. J. Magee, J. N. Mitchell, and M. P. Rigney, “3D precision surface measurement by dynamic structured light,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 5265, pp. 24-32, Oct. 2003.

[28] B. C. Mecrow and A. G. Jack, “The modeling of segmented laminations in three dimensional eddy current calculation,” IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1122-1125, Mar. 1992.

[29] C.-P. Liu, T.-K. Lin, Y.-H. Chang, C.-S. Yu, K.-T. Wu, S.-J. Wang, T.-F. Ying, and D.-R. Huang, “Study of eddy current power loss from outer-winding coils of a magnetic position sensor,” Journal of Magnetism and Magnetic Materials, vol. 209, no. 1, pp. 201-204, Feb. 2000.

[30] C.-P. Liu, Y.-H. Chang, T.-K. Lin, K.-T. Wu, C.-S. Yu, D.-R. Huang, T.-F. Ying, and S.-J. Wang, “Calculation of skin depths and eddy-current power losses for magnetic position sensors,” Journal of Materials Science and Technology, vol. 16, no. 2, pp. 244-245, Apr. 2000.

[31] C.-C. Tai, H.-C. Yang, and Y.-H. Lin, “Modeling the surface condition of ferromagnetic metal by the swept-frequency eddy current method,” IEEE Transactions on Magnetics, vol. 38, no. 1, pp. 205-210, Jan. 2002.

[32] C. B. Ahn, K. H. Kim, K. C. Moon, K. S. Jeong, H. C. Kim, J. J. Lee, C. M. Hwang, and K. Sun, “Development of eddy current sensor systems in artificial heart for noncontact gap sensing,” Proceedings of the 27th IEEE-EMBS Annual International Conference, pp. 3913-3915, Sept. 2005.

[33] J. H. V. Lefebvre and C. Mandache, “Pulsed eddy current thickness measurement of conductive layers over ferromagnetic substrates,” International Journal of Applied Electromagnetics and Mechanics, vol. 27, no. 1-2, pp. 1-8, 2008.

[34] J. P. Tilson and J. Blitz, “Analysis of the Behavior of Multi-Coiled Eddy-Current Probes,” British Journal of NDT, pp. 276-278, Sept. 1984.

[35] W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, McGraw-Hill, New York, U.S.A., 2000.

[36] R. E. Fischer and T. G. Biljana, Optical System Design, McGraw-Hill, New York, U.S.A., 2000.

[37] F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Optical Engineering, vol. 39, no. 1, pp. 10-22, Jan. 2000.

[38] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J. D. Legat, “A survey on industrial vision systems, applications and tools,” Image and Vision Computing, vol. 21, no. 2, pp. 171-188, Feb. 2003.

[39] G. Clound, Optical Methods of Engineering Analysis, Cambridge University Press, Cambridge, U.K., 1998.

[40] P. Hariharan, Optical Interferometry, Academic Press, Boston, U.S.A., 2003.

[41] D. Malacara, Optical Shop Testing, Third Edition, John Wiley & Sons Inc., Hoboken, New Jersey, U.S.A., 2007.

[42] W. J. Bates, “A wavefront shearing interferometer,” Proceedings of Physical Society, vol. 59, no. 6, pp.940-950, Nov. 1947.

[43] R. L. Drew, “A simplified shearing interferometer,” Proceedings of Physical Society, vol. 64, no. 11, pp.1005-1010, Nov. 1951.

[44] J. B. Saunders, “A simple interferometric method for workshop testing of optics,” Applied Optics, vol. 9, no. 7, pp.1623-1629, July 1970.

[45] K. Hogmoen and O. J. Lokberg, “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, vol. 16, no. 7, pp.1869-1875, July 1977.

[46] L.-S. Wang and S. Krishnaswamy, “Shape measurement using additive-subtractive phase shifting speckle interferometry,” Measurement Science and Technology, vol. 7, no. 12, pp. 1748-1754, Dec. 1996.

[47] C. J. Tay, C. Quan, and H. M. Shang, “Shape identification using phase shifting interferometry and liquid-crystal phase modulator,” Optics and Laser Technilogy, vol. 30, no. 8, pp.545-550, Nov. 1998.

[48] J.-B. Song, Y.-W. Lee, I.-W. Lee, and Y.-H. Lee, “Simple phase-shifting method in a wedge-plate lateral-shearing interferometer,” Applied Optics, vol.43, no. 20, pp. 3989-3992, July 2004.

[49] P. J. Rodrigo, M. Lim, and C. Saloma, “Optical-feedback semiconductor laser michelson interferometer for displacement measurements with directional discrimination,” Applied Optics, vol. 40, no. 4, pp. 506-513, Feb. 2001.

[50] D. S. Mehta, P. Singh, M. S. Faridi, S. Mirza, and C. Shakher, “Distance measurement with extended range using lateral shearing interferometry and fourier transform fringe analysis,” Optical Engineering, vol. 44, no. 6, June 2005.

[51] Y. P. Kumar and S. Chatterjee, “Noncontact thickness measurement of plane-parallel transparent plates with a lateral shearing interferometer,” Optical Engineering, vol. 46, no. 3, Mar. 2007.

[52] S. Parthasarathy, J. Birk, and J. Dessimoz, “Laser rangefinder for robot control and inspection,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 336, pp. 2-11, 1982.

[53] H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Applied Optics, vol. 25, no. 17, pp. 2976-2980, Sept. 1986.

[54] M. J. Tsai, J. S. Smith, and J. Lucas, “An optical time-of-flight range finding technique for machine vision,” The fourth International Conference on Automation Technology MIRL/ITRI, Hsinchu, Taiwan, pp.531-537, July 1996.

[55] J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Applied Optics, vol. 37, no. 31, pp. 7298-7304, Nov. 1998.

[56] D. P. Sarr and P. W. Reed, “Surface roughness measurement of tooling spheres for laser measurements,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 4189, pp. 229-238, Nov. 2000.

[57] B. Buttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1512-1525, July 2008.

[58] J. C. Scott, “Laser sensing in the iron-making blast furnace,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 1399, pp. 137-144, Oct. 1990.

[59] G. Holzmüller, “Laser based dimensional measurement solutions for heavy plate,” Proceedings of the 2nd European Rolling Conference, Sweden, May 2000.

[60] J. Svnesson, “Laser based width measurement of hot slab in casting process,” Proceedings of the 2nd European Rolling Conference, Sweden, May 2000.

[61] RIEGL Laser Measurement Systems, http://www.riegl.com/, 2009/07/06.

[62] T. Kanade and H. Asada, “Non-contact visual three dimensional ranging devices,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 283, pp. 48-53, 1981.





[63] K. L. Boyer and A. C. Kak, “Structural stereopsis for 3-D vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 2, pp. 144-166, Mar. 1988.

[64] D. Nitzan, “Three dimensional vision structure for robot applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 3, pp. 291-309, May 1988.

[65] D. J. Lee and R. S. Anbalagan, “Three-dimensional measurement of moving objects using a multiple-camera vision system,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 2549, pp. 261-271, July 1995.

[66] J. Salvi, J. Pages, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recognition, vol. 37, no. 4, pp. 827-849, Apr. 2004.

[67] O. Sidla, E. Wildling, A. Niel, and H. Barg, “Vision system for gauging and automatic straightening of steel bars,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 4189, pp. 248-257, Nov. 2000.

[68] Y.-Y. Yang and W.-C. Li, “The Development of Dual Width Gauges and Hole Detectors in Continuous Annealing Line,” SEAISI Quarterly Journal, vol. 33, no. 4, pp 46-52, 2004.

[69] C.-Y. Hor, W.-C. Li, Y.-Y. Yang, S.-K. Kuo and J.-C. Liu, “The Development of Laser-Based Slab Shape Measuring System,” SEAISI Quarterly Journal, vol. 36, no. 1, pp 63- 67, 2007.

[70] Y.-Y. Yang, C.-M. Chen, C.-Y. Hor, W.-C. Li, and J.-H. Wu, “Development of a camber measurement system in a hot rolling mill,” Proceedings of the IEEE Industry Applications Society 43rd Annual Meeting, Edmonton, Alberta, Canada, IAS11p1, Oct. 2008..

[71] 陳同孝,張真誠,黃國峰,數位影像處理技術,旗標出版社,台灣,2003。

[72] C. R. Gonzalez and R. E. Wood, Digital Image Processing, Addison-Wesley Pub. Co., U.S.A., 1992.

[73] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and Machine Vision, Chapman & Hall, Great Britain, 1993.

[74] 林宸生,數位信號—影像與語音處理(修訂二版),全華科技圖書,台灣,2003。

[75] 連國珍,數位影像處理,儒林圖書,台灣,2008。



[76] 鐘國亮,影像處理與電腦視覺(第三版),東華書局,台灣,2006。

[77] C. K. Leung and F. K. Lam, “Maximum segmented image information thresholding,” Graphical Models and Image Processing, vol. 60, no. 1, pp. 57-76, Jan.1998.

[78] N. Friel and I. S. Molchanov, “A new thresholding technique based on random sets,” Pattern Recognition, vol. 32, no. 9, pp. 1507-1517, Sept. 1999.

[79] Q. Chen, Q.-S. Sun, P. A. Heng, and D.-S. Xia, “A doubled-threshold image binarization method based on edge detector,” Pattern Recognition, vol. 41, no. 4, pp. 1254-1267, Apr. 2008.

[80] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979.

[81] Y. Nakagawa and A. Rosenfeld, “Some experiments on variable thresholding,” Pattern Recognition, vol. 11, no. 3, pp. 191-204, 1979.

[82] D. G. Daut and D. Zhao, “A flaw detection method based on morphological image processing”, IEEE Transactions on Circuit and Systems for Video Technology, vol. 3, no. 6, pp. 389-398, Dec. 1993.

[83] A. Elmabrouk and A. Aggoun, “Edge detection using local histogram analysis,” Electronics Letters, vol. 34, no. 12, June 1998.

[84] M. B. Ahmad and T.-S. Choi, “Local threshold and boolean function based edge detection,” IEEE Transactions on Consumer Electronics, vol. 45, no. 3, pp. 332-333, Aug. 1999.

[85] J. Ai and X. Zhu, “Analysis and detection of ceramic-glass surface defects based on computer vision,” Proceedings of the 4th World Congress on Intelligent Control and Automation, vol. 4, pp.3014-3018, June 2002.

[86] X. Jiang and D. Mojon, “Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.1, pp. 131-137, Jan. 2003.

[87] S. Gbosal and R. Mehrotra, “Orthogonal moment operators for sub-pixel edge detection,” Pattern Recognition, vol. 26, no. 2, pp. 295-306, Feb. 1993.

[88] J. Kris and A. Dimitris, “Sub-pixel edge location and the interpolation of still image,” IEEE Transactions on Image Processing, vol. 4, no. 3, pp. 285-295, Mar. 1995.



[89] R. B. Fisher and D. K. Naidu, “A comparison of algorithms for sub-pixel peak detection,” Advances in Image Processing, Multimedia and Machine Vision, Springer-Verlag, Heidelberg, pp. 385-404, 1996.

[90] G. Bickel, G. Hausler, and M. Maul, “Triangulation with expended range of depth,” Optical Engineering, vol. 24, no. 6, pp. 975-977, June 1985.

[91] R. G. Dorsch, G. Hausler, and J. M. Hermann, “Laser triangulation: fundamental uncertainty in distance measurement,” Applied Optics, vol. 33, no. 7, pp. 1306-1314, Mar. 1994.

[92] B.-H. Zhuang, J.-H. Zhang, C. Jiang, Z. Li, and W. Zhang, “Precision laser triangulation range sensor with double detectors for measurement on CMMs,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 2349, pp. 44-52, Jan. 1995.

[93] H.-T. Yau and C.-H. Menq, “An automated dimensional inspection environment for manufactured parts using coordinate measuring machines,” International Journal of Production Research, vol. 30, no. 7, pp. 1517-1536, July 1992.

[94] C. Che and J. Ni, “A generic coordinate transformation uncertainty assessment approach and its application in machine vision metrology,” International Journal of Machine Tool & Manufacture, vol. 38, no. 10, pp. 1241-1256, Oct. 1998.

[95] T.-S. Shen and C.-H. Menq, “Automatic camera calibration for a multiple-sensor integrated coordinate measurement system,” IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 502-507, Aug. 2001.

[96] G. J. Agin and P. T. Highnam, “Movable light-stripe sensor for obtaining three-dimension coordinate measurement,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 360, pp. 326-333, 1982.

[97] R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE Journal of Robotics and Automation, vol. 3, no. 4, pp.323-344, Aug. 1987.

[98] D. W. Manthey, K. N. KnappII, and D. Lee, “Calibration of a laser range-finding coordinate-measuring machine,” Optical Engineering, vol. 33, no. 10, pp. 3372-3380, Oct. 1994.

[99] G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 628-636, June 2000.


[100] Y.-F. Li and S.-Y. Chen, “Automatic recalibration of an active structured light vision system,” IEEE Transactions on Robotics and Automation, vol. 19, no. 2, pp. 259- 268, Apr. 2003.

[101] L.-S. Ricardo, B. Thorsten, and P. J. Werner, “Accurate procedure for the calibration of a structured light system,” Optical Engineering, vol. 43, no. 2, pp. 464-471, Feb. 2004.

[102] C.-T. Liu, S.-Y. Lin, and Y.-Y. Yang, “On the Fuzzy-based Control Strategy Design and Implementation of a Non-contacting Steel Plate Conveyance System,” Proceedings of the IEEE Industry Applications Society 43rd Annual Meeting, Edmonton, Alberta, Canada, Oct. 2008.

[103] Sensor Technologies America Inc./Cameras/Analog Cameras/Progressive Scan,
http://www.sentechamerica.com/pages/cameras/groups/progressivescan.aspx, 2009/07/11.

[104] Euresys - Frame Grabbers and Machine Vision Software Tools,
http://www.euresys.com/, 2009/07/11.

[105] Basler Vision Technologies/MACHINE VISION/Products/Line Scan Cameras/, http://www.baslerweb.com/, 2009/07/11.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code